分析 由雙曲線方程求得a=2$\sqrt{3}$,由雙曲線的定義可得 AF2+BF2 =4a+AB,△ABF2的周長是( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB,計算可得答案.
解答 解:由題意可得2a=4$\sqrt{3}$,由雙曲線的定義可得
AF2-AF1=2a,BF2 -BF1=2a,∴AF2+BF2 -AB=4a,即AF2+BF2 =4a+AB.
△ABF2(F2為右焦點)的周長是 ( AF1 +AF2 )+( BF1+BF2 )=(AF2+BF2 )+AB=4a+2AB=8$\sqrt{3}$+16.
故答案為:8$\sqrt{3}$+16.
點評 本題考查雙曲線的定義和雙曲線的標準方程,以及雙曲線的簡單性質的應用,求出AF2+BF2 =4a+AB 是解題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | $\frac{10}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2) | C. | ($\frac{1}{2}$,1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,3x>0 | B. | ?x0∈R,lgx0=0 | ||
C. | $?x∈({0,\frac{π}{2}}),x>sinx$ | D. | $?{x_0}∈R,sin{x_0}+cos{x_0}=\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x+y-1=0 | B. | x-y-1=0 | C. | x+y+1=0 | D. | x-y+1=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com