15.命題“若 $α=\frac{π}{4}$,則 tanα=1”的逆否命題是(  )
A.若 $α≠\frac{π}{4}$,則tanα≠1B.若 $α=\frac{π}{4}$,則tanα≠1
C.若 tanα≠1,則$α≠\frac{π}{4}$D.若 tanα≠1,則$α=\frac{π}{4}$

分析 根據(jù)命題“若p則q”的逆否命題是“若¬q則¬p”,寫出即可.

解答 解:命題“若 $α=\frac{π}{4}$,則 tanα=1”的逆否命題是
“若  tanα≠1,則$α≠\frac{π}{4}$”.
故選:C.

點評 本題考查了命題與逆否命題的應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時滿足:
①不等式f(x)≤0的解集有且只有一個元素;
②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
設數(shù)列{an}的前n項和Sn=f(n).
(1)求函數(shù)f(x)的表達式;
(2)設各項均不為0的數(shù)列{bn}中,所有滿足bi•bi+1<0的整數(shù)i的個數(shù)稱為這個數(shù)列{bn}的變號數(shù),令${b_n}=1-\frac{a}{a_n}$(n∈N*),求數(shù)列{bn}的變號數(shù);
(3)設數(shù)列{cn}滿足:${c_n}=\sum_{i=1}^n{\frac{1}{{{a_i}•{a_{i+1}}}}}$,試探究數(shù)列{cn}是否存在最小項?若存在,求出該項,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若f(x)是定義域為R,最小正周期$\frac{3π}{2}$的函數(shù),若f(x)=sinx,x∈[0,π],則f($\frac{15π}{4}$)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合A={x|2≤2x≤8},B={x|x>2},全集U=R.
(1)求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=($\sqrt{x}$)2表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標系的原點;
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正確命題的序號是③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知橢圓$C:\frac{x^2}{8+a}+\frac{y^2}{9}=1$的焦距為$4\sqrt{2}$,則a=9或-7;當a<0時,橢圓C上存在一點P,有|PF1|=2|PF2|(F1,F(xiàn)2為橢圓焦點),則△F1PF2的面積為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若某程序框圖如圖所示,則該程序運行后輸出的B等于( 。
A.2B.5C.14D.41

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點,M是棱PC的中點,PA=PD=PC,BC=$\frac{1}{2}$AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若PC=2$\sqrt{5}$,求三棱錐P-MBQ的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知雙曲線的焦點在x軸上,|F1F2|=2$\sqrt{3}$,漸近線方程為$\sqrt{2}x±y=0$,問:過點B(1,1)能否作直線l,使l與雙曲線交于M,N兩點,并且點B為線段MN的中點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案