函數(shù)y=a2x-2(a>0,a≠1)的圖象恒過點A,若直線l:mx+ny-1=0經(jīng)過點A,則坐標原點O到直線l的距離的最大值為
 
考點:指數(shù)函數(shù)的圖像與性質
專題:計算題,函數(shù)的性質及應用,直線與圓
分析:由指數(shù)函數(shù)的圖象恒過(0,1),得到定點A(1,1),再由點到直線的距離公式,結合二次函數(shù)的最值,配方即可得到最大值.
解答: 解:令2x-2=0,則x=1,y=1,
則A(1,1),
由于直線l:mx+ny-1=0經(jīng)過點A,
則m+n=1,
則坐標原點O到直線l的距離d=
1
m2+n2

=
1
m2+(1-m)2
=
1
2m2-2m+1

=
1
2(m-
1
2
)2+
1
2

則當m=n=
1
2
,d取得最大值
2

故答案為:
2
點評:本題考查指數(shù)函數(shù)的圖象特點,考查點到直線的距離公式以及二次函數(shù)最值的求法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若橢圓C1
x2
a12
+
y2
b12
=1(a1>b1>0)和橢圓C2
x2
a22
+
y2
b22
=1(a2>b2>0)的離心率相同,且a1>a2,給出如下四個結論:
①橢圓C1和橢圓C2一定沒有公共點;②
a1
a2
=
b1
b2
;③a12-a22<b12-b22;④a1-a2<b1-b2
則所有結論正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
AB
=(-4,6,-1),
AC
=(4,3,-2),若|
α
|=1,且
α
AB
α
AC
,則
α
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設邊A、B、C所對的邊分別為a,b,c,已知A+C=2B,并且sinAsinC=cos2B,三角形的面積S△ABC=4
3
,求a,b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+bx+b)
1-2x
(b∈R).g(x)=x+
a
x
+lnx(a∈R).
(1)若f(x)在區(qū)間(0,
1
3
)上單調遞增,求b的取值范圍;
(2)當a≥2時,若存在x1,x2(x1≠x2),使得曲線y=g(x)在x=x1與x=x2處的切線互相平行,求證x1+x2>8;
(3)當b=4時,若?x1∈[-4,
1
2
],?x2∈(0,+∞),使f(x1)+g(x2)<15,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+3是偶函數(shù),且其圖象過點(-1,4).
(1)求f(x)的解析式;
(2)求函數(shù)F(x)=f(ex-a)+f(e-x-a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是奇函數(shù),且在(0,+∞)內是增函數(shù),又f(-3)=0,則x•f(x)>0的解集是(  )
A、{x|-3<x<0,或x>3}
B、{x|x<-3,或0<x<3}
C、{x|x<-3,或x>3}
D、{x|-3<x<0,或0<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)若點D是線段BC的中點,請問在線段AB1是否存在點E,使得DE∥面AA1C1C?若存在,請說明點E的位置,若不存在,請說明理由;
(Ⅲ)(本小問只理科學生做)求二面角C-A1B1-C1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點F是拋物線y2=8x的焦點,兩曲線的一個公共點為P,且|PF|=5,則雙曲線的漸近線方程為( 。
A、y=±
1
2
x
B、y=±2x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

同步練習冊答案