14.在曲線y=x2(x≥0)上某一點A處作一切線使之與曲線以及x軸所圍成的面積為$\frac{1}{12}$,試求:
(1)切點A的坐標;
(2)過切點A的切線方程.

分析 (1)求切點A的坐標及過切點A的切線方程,先求切點A的坐標,設點A的坐標為(a,a2),只須在切點處的切線方程,故先利用導數(shù)求出在切點處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率從而得到切線的方程進而求得面積的表達式.最后建立關于a的方程解之即得.
(2)結合(1)求出其斜率k的值即可,即導數(shù)值即可求出切線的斜率.從而問題解決.

解答 解:(1)如圖示:
,
設點A的坐標為(a,a2),過點A的切線的斜率為k=y'|x=a=2a,
故過點A的切線l的方程為y-a2=2a(x-a),即y=2ax-a2,令y=0,得x=$\frac{a}{2}$,
則S=S△ABO-S△ABC=-($\frac{1}{2}$•$\frac{a}{2}$•a2-${∫}_{0}^{a}$x2dx)=$\frac{{x}^{3}}{3}$${|}_{0}^{a}$-$\frac{{a}^{3}}{4}$=$\frac{{a}^{3}}{12}$=$\frac{1}{12}$,
∴a=1
∴切點A的坐標為(1,1),
(2)由(1)得:A的坐標為(1,1),
∴k=2x=2,
∴過切點A的切線方程是y=2x-1.

點評 本小題主要考查利用導數(shù)研究曲線上某點切線方程、定積分的應用、直線的方程等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.若x,y滿足$\left\{\begin{array}{l}x-2≤0\\ x+y≥0\\ x-3y+4≥0\end{array}\right.$,則x+2y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過拋物線y2=4ax(a>0)的焦點F作斜率為-1的直線l,l與離心率為e的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的兩條漸近線的交點分別為B,C.若xB,xC,xF分別表示B,C,F(xiàn)的橫坐標,且$x_F^2=-{x_B}•{x_C}$,則e=( 。
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},則A∩∁UB=( 。
A.{3,6}B.{5}C.{2,4}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{2-{2}^{x}}$+lnx的定義域為(0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{6}}}{2}$,則它的漸近線方程為( 。
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在長方體ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分別是AA1和BB1的中點,G是DB上的點,且DG=2GB.
(I)作出長方體ABCD-A1B1C1D1被平面EB1C所截的截面(只需作出,說明結果即可);
(II)求證:GF∥平面EB1C;
(III)設長方體ABCD-A1B1C1D1被平面EB1C所截得的兩部分幾何體體積分別為V1、V2(V1>V2),求$\frac{{V}_{2}}{{V}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知x∈R,用[x]表示不超過x的最大整數(shù),記{x}=x-[x],若a∈(0,1),且$\{a\}>\{a+\frac{1}{3}\}$,則實數(shù)a的取值范圍是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知三條不同的直線a,b,c,若a⊥b,則“a⊥c”是“b∥c”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案