分析 (1)求切點A的坐標及過切點A的切線方程,先求切點A的坐標,設點A的坐標為(a,a2),只須在切點處的切線方程,故先利用導數(shù)求出在切點處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率從而得到切線的方程進而求得面積的表達式.最后建立關于a的方程解之即得.
(2)結合(1)求出其斜率k的值即可,即導數(shù)值即可求出切線的斜率.從而問題解決.
解答 解:(1)如圖示:
,
設點A的坐標為(a,a2),過點A的切線的斜率為k=y'|x=a=2a,
故過點A的切線l的方程為y-a2=2a(x-a),即y=2ax-a2,令y=0,得x=$\frac{a}{2}$,
則S=S△ABO-S△ABC=-($\frac{1}{2}$•$\frac{a}{2}$•a2-${∫}_{0}^{a}$x2dx)=$\frac{{x}^{3}}{3}$${|}_{0}^{a}$-$\frac{{a}^{3}}{4}$=$\frac{{a}^{3}}{12}$=$\frac{1}{12}$,
∴a=1
∴切點A的坐標為(1,1),
(2)由(1)得:A的坐標為(1,1),
∴k=2x=2,
∴過切點A的切線方程是y=2x-1.
點評 本小題主要考查利用導數(shù)研究曲線上某點切線方程、定積分的應用、直線的方程等基礎知識,考查運算求解能力,考查數(shù)形結合思想、化歸與轉化思想.屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | $\sqrt{6}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3,6} | B. | {5} | C. | {2,4} | D. | {2,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±2x | B. | y=±$\frac{1}{4}$x | C. | y=±$\frac{1}{2}$x | D. | y=±$\frac{{\sqrt{2}}}{2}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com