4.若x,y滿足$\left\{\begin{array}{l}x-2≤0\\ x+y≥0\\ x-3y+4≥0\end{array}\right.$,則x+2y的最大值為6.

分析 設(shè)z=x+2y,作出不等式組對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,
設(shè)z=x+2y,由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直線y=$-\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線經(jīng)過點A時,
直線y=$-\frac{1}{2}x+\frac{z}{2}$的截距最大,此時z最大,
由$\left\{\begin{array}{l}{x-2=0}\\{x-3y+4=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2)
此時z=2+2×2=6.
故答案為:6

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.某工廠生產(chǎn)甲乙丙三種不同型號的產(chǎn)品,三種產(chǎn)品產(chǎn)量之比為1:3:5,現(xiàn)用分層抽樣的方法抽得容量為n的樣本進行質(zhì)量檢測,已知抽得乙種型號的產(chǎn)品12件,則n=36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,c=2a,B=120°,且△ABC面積為$\frac{\sqrt{3}}{2}$.
(1)求b的值;
(2)求tanA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖是某高二學生自高一至今月考從第1次到14次的數(shù)學考試成績莖葉圖,根據(jù)莖葉圖計算數(shù)據(jù)的中位數(shù)為( 。
A.98B.94C.94.5D.95

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.從拋物線y2=32x上各點向x軸作垂線,其垂線段中點的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)已知直線l:y=k(x-2)(k>0)與軌跡E交于A,B兩點,且點F(2,0),若|AF|=2|BF|,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.試寫出函數(shù)f(x)=x${\;}^{\frac{1}{2}}$的性質(zhì),并作出它的大致圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow$=($\frac{1}{2},\frac{\sqrt{3}}{2}$)
(1)若m=-$\sqrt{3}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)設(shè)$\overrightarrow{a}⊥\overrightarrow$.
①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[$\overrightarrow{a}$+(t2-3)$\overrightarrow$]⊥(-k$\overrightarrow{a}$+t$\overrightarrow$),求$\frac{k+{t}^{2}}{t}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)f(x)=x+cosx在[0,π]上的最小值為(  )
A.-2B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在曲線y=x2(x≥0)上某一點A處作一切線使之與曲線以及x軸所圍成的面積為$\frac{1}{12}$,試求:
(1)切點A的坐標;
(2)過切點A的切線方程.

查看答案和解析>>

同步練習冊答案