分析 畫出立體圖形,根據(jù)中點找平行線,把所求的異面直線角轉化為一個三角形的內角來計算.
解答 解:如圖,連接CF,取BF的中點M,連接CM,EM,
則ME∥AF,故∠CEM即為所求的異面直線角.
設這個正四面體的棱長為2,
在△ABD中,AF=$\sqrt{3}$=CE=CF,EM=$\frac{\sqrt{3}}{2}$,CM=$\frac{\sqrt{13}}{2}$.
∴cos∠CEM=$\frac{\frac{3}{4}+3-\frac{13}{4}}{2×\frac{\sqrt{3}}{2}×\sqrt{3}}$=$\frac{1}{6}$.
故答案為$\frac{1}{6}$.
點評 本題考查空間點、線、面的位置關系及學生的空間想象能力、求異面直線角的能力.在立體幾何中找平行線是解決問題的一個重要技巧,這個技巧就是通過三角形的中位線找平行線,如果試題的已知中涉及到多個中點,則找中點是出現(xiàn)平行線的關鍵技巧.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -2 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-e) | B. | (-∞,$\frac{1}{e}$) | C. | (0,$\frac{1}{e}$) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
頻數(shù) | 2 | 12 | 34 | 38 | 10 | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com