2.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{a}_{n}-2}{\frac{5}{4}{a}_{n}-2}$,則a2017=0.

分析 數(shù)列{an}滿足a1=0,an+1=$\frac{{a}_{n}-2}{\frac{5}{4}{a}_{n}-2}$,可得:an+4=an.即可得出.

解答 解:∵數(shù)列{an}滿足a1=0,an+1=$\frac{{a}_{n}-2}{\frac{5}{4}{a}_{n}-2}$,
∴a2=$\frac{-2}{-2}$=1,a3=$\frac{1-2}{\frac{5}{4}×1-2}$=$\frac{4}{3}$,同理可得:a4=2,a5=0,…,
∴an+4=an
則a2017=a504×4+1=a1=0.
故答案為:0.

點評 本題考查了數(shù)列遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知二次函數(shù)f(x)=ax2+bx+c圖象的對稱軸方程為x=2,且經(jīng)過點(1,4)和點(5,0),則f(x)的解析式為f(x)=-$\frac{1}{2}$x2+2x+$\frac{5}{2}$,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對任意的x∈R,都有f(x)>f′(x)+2,且f(x)-2019為奇函數(shù),則不等式f(x)-2017ex<2的解集為( 。
A.(-∞,0)B.(0,+∞)C.$(-∞,\frac{1}{e^2})$D.$(\frac{1}{e^2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$S=C_{27}^1+C_{27}^2+C_{27}^3+…+C_{27}^{27}$,則S除以9所得的余數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某生態(tài)公園的平面圖呈長方形(如圖),已知生態(tài)公園的長AB=8(km),寬AD=4(km),M,N分別為長方形ABCD邊AD,DC的中點,P,Q為長方形ABCD邊AB,BC(不含端點)上的一點.現(xiàn)公園管理處擬修建觀光車道P-Q-N-M-P,要求觀光車道圍成四邊形(如圖陰影部分)的面積為15(km2),設(shè)BP=x(km),BQ=y(km),
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)若B為公園入口,P,Q為觀光車站,觀光車站P位于線段AB靠近入口B的一側(cè).經(jīng)測算,每天由B入口至觀光車站P,Q乘坐觀光車的游客數(shù)量相等,均為1萬人,問如何確定觀光車站P,Q的位置,使所有游客步行距離之和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知α,β為平面,a,b,c為直線,下列說法正確的是( 。
A.若b∥a,a?α,則b∥αB.若α⊥β,α∩β=c,b⊥c,則b⊥β
C.若a⊥c,b⊥c,則a∥bD.若a∩b=A,a?α,b?α,a∥β,b∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,則目標函數(shù)z=4x+5y的最小值為(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下命題正確的個數(shù)為( 。
(1)存在無數(shù)個α,β∈R,使得等式sin(α-β)=sinαcosβ+cosαsinβ成立;
(2)在△ABC中,“A>$\frac{π}{6}$”是“sinA>$\frac{1}{2}$”的充要條件;
(3)命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
(4)命題“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若α≠$\frac{π}{6}$,則sinα≠$\frac{1}{2}$”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(m,m+1),$\overrightarrow$=(2,-1),若$\overrightarrow{a}⊥\overrightarrow$,則實數(shù)m=1.

查看答案和解析>>

同步練習(xí)冊答案