【題目】(本小題滿分12分,()小問6分,()小問6分)一家公司計劃生產(chǎn)某種小型產(chǎn)品的月固定成本為萬元,每生產(chǎn)萬件需要再投入萬元.設該公司一個月內(nèi)生產(chǎn)該小型產(chǎn)品萬件并全部銷售完,每萬件的銷售收入為萬元,且每萬件國家給予補助萬元. 為自然對數(shù)的底數(shù),是一個常數(shù).

)寫出月利潤(萬元)關于月產(chǎn)量(萬件)的函數(shù)解析式;

)當月生產(chǎn)量在萬件時,求該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值(萬元)及此時的月生產(chǎn)量值(萬件). (注:月利潤=月銷售收入+月國家補助-月總成本).

【答案】;

)月生產(chǎn)量在萬件時,該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值為,此時的月生產(chǎn)量值為(萬件)

【解析】

試題()根據(jù)題設條件:月利潤=月銷售收入+月國家補助-月總成本,可得利潤(萬元)關于月產(chǎn)量(萬件)的函數(shù)解析式;

)先求函數(shù)的導數(shù),再利用導數(shù)的符號判斷函數(shù)在的單調(diào)性并進一步據(jù)此求出其最大值及最大值點.

試題解析:解:()由于:月利潤=月銷售收入+月國家補助-月總成本,可得

的定義域為

列表如下:






+


-



極大值


由上表得:在定義域上的最大值為.

.即:月生產(chǎn)量在萬件時,該公司在生產(chǎn)這種小型產(chǎn)品中所獲得的月利潤最大值為,此時的月生產(chǎn)量值為(萬件).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·雅安高一檢測)已知函數(shù)f(x)=2x的定義域是[0,3],設g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定義域;

(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次數(shù)學測驗中,全班名學生的數(shù)學成績的頻率分布直方圖如下,已知分數(shù)在的學生數(shù)有14.

1)求總?cè)藬?shù)和分數(shù)在的人數(shù)

2)利用頻率分布直方圖,估算該班學生數(shù)學成績的眾數(shù)和中位數(shù),平均數(shù)各是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)完成表一中對應的值,并在坐標系中用描點法作出函數(shù)的圖象:(表一)

0.25

0.5

0.75

1

1.25

1.5

0.08

1.82

2.58

2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;

3)說明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達到精確度為0.01時運算次數(shù)的最小值并求此時方程的根的近似值,且說明理由.

(表二)二分法的結(jié)果

運算次數(shù)的值

左端點

右端點

-0.537

0.6

0.75

0.08

-0.217

0.675

0.75

0.08

-0.064

0.7125

0.75

0.08

-0.064

0.7125

0.73125

0.011

-0.03

0.721875

0.73125

0.011

-0.01

0.7265625

0.73125

0.011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的有_______.

①回歸直線恒過點,且至少過一個樣本點;

②根據(jù)列列聯(lián)表中的數(shù)據(jù)計算得出,而,則有99%的把握認為兩個分類變量有關系;

是用來判斷兩個分類變量是否相關的隨機變量,當的值很小時可以推斷兩個變量不相關;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在P地正西方向8kmA處和正東方向1kmB處各有一條正北方向的公路ACBD,現(xiàn)計劃在ACBD路邊各修建一個物流中心EF,為緩解交通壓力,決定修建兩條互相垂直的公路PEPF,設

為減少對周邊區(qū)域的影響,試確定E,F的位置,使的面積之和最;

為節(jié)省建設成本,求使的值最小時AEBF的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線M的左、右頂點分別為A,B,設P是曲線M上的任意一點.

1)當P異于AB時,記直線PA、PB的斜率分別為、是否為定值,請說明理由.

2)已知點C在曲線M長軸上(異于A、B兩點),且的最大值為7,求點C的坐標.

查看答案和解析>>

同步練習冊答案