14.如圖給出的是計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個(gè)程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.i≤1008?B.i>1008?C.i≤1009?D.i>1009?

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,計(jì)算出S的值,再根據(jù)已知判斷退出條件.

解答 解:框圖首先給累加變量S賦值為0,給循環(huán)變量i賦值1.
判斷,判斷框中的條件滿足,執(zhí)行S=0+1,i=1+1=2;
判斷,判斷框中的條件滿足,執(zhí)行S=0+1+$\frac{1}{3}$,i=2+1=3;
判斷,判斷框中的條件滿足,執(zhí)行S=0+1+$\frac{1}{3}$+$\frac{1}{5}$,i=3+1=4;

依此類推,令2017=2i-1,知i=1009,可得:
i=1009,判斷,判斷框中的條件滿足,執(zhí)行S=1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$,i=1010,
此時(shí)不滿足條件,退出循環(huán),則判斷框內(nèi)應(yīng)填入的條件是:i≤1009.
故選:C.

點(diǎn)評(píng) 本題主要考查了當(dāng)型循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)有兩種形式:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后循環(huán),直到型循環(huán)是先循環(huán)后判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.為了了解某火車站候車旅客用手機(jī)使用火車站W(wǎng)IFI情況,在某日15:00時(shí),把該候車廳10至50歲年齡段的旅客按年齡分區(qū)間[10,20),[20,30),[30,40),[40,50]得到如圖所示的人數(shù)頻率分布直方圖,現(xiàn)用分層抽樣的方法從中得到一樣本.若樣本在區(qū)間[20,30)上有6人,則該樣本在區(qū)間[40,50]上有4人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知e為自然對(duì)數(shù)的底數(shù),函數(shù)f(x)=$\left\{\begin{array}{l}{4x-4,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,則方程f(x)=ax恰有兩個(gè)不同的實(shí)數(shù)解時(shí),實(shí)數(shù)a的取值范圍是( 。
A.(e,4]B.(4,+∞)C.(e,+∞)D.($\frac{1}{e}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{CB}$=(k-2,-3),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,則△ABC是直角三角形的概率是( 。
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在實(shí)數(shù)x1、x2、x3、x4滿足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1•x2•(x3-2)•(x4-2)的取值范圍是(  )
A.(4,16)B.(0,12)C.(9,21)D.(15,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若拋物線y2=-2px(p>0)的焦點(diǎn)與雙曲線$\frac{{x}^{2}}{3}$-y2=1的左焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知焦點(diǎn)在x軸雙曲線的一條漸近線的傾斜角$\frac{π}{6}$,則此雙曲線的離心率為(  )
A.2B.$\sqrt{3}$C.$\frac{2\sqrt{6}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖是一個(gè)幾何體的三視圖,則此幾何體的側(cè)面積為$\sqrt{2}π+\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-2ax-a)的值域?yàn)镽,且f(x)在(-2,1-$\sqrt{2}$)上為增函數(shù).則a的取值范圍為[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案