A. | 有最大值1,無最小值 | B. | 有最大值$\frac{\sqrt{3}}{2}$,最小值$\frac{1}{2}$ | ||
C. | 有最小值$\frac{\sqrt{3}}{2}$,無最大值 | D. | 有最大值1,最小值$\frac{\sqrt{3}}{2}$ |
分析 由題意可得即2kπ<θ<2kπ+π,k∈Z ①,kπ+$\frac{π}{6}$≤θ≤kπ+$\frac{π}{3}$,k∈Z ②,從而得到θ∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{π}{3}$],∴sinθ的最大值為$\frac{\sqrt{3}}{2}$,最小值為$\frac{1}{2}$.再化簡此矩形的面積,從而得出結論.
解答 解:∵矩形的兩相鄰邊長為tan$\frac{θ}{2}$和1+cosθ,∴tan$\frac{θ}{2}$>0,cosθ≠-1,kπ<$\frac{θ}{2}$<kπ+$\frac{π}{2}$,k∈Z,即2kπ<θ<2kπ+π,k∈Z ①.
∵對于任何實數(shù)x,f(x)=sinθ•x2+$\root{4}{3}$x+cosθ≥0恒成立,
∴△=$\sqrt{3}$-4sinθcosθ≤0,即 sin2θ≥$\frac{\sqrt{3}}{2}$,∴2kπ+$\frac{π}{3}$≤2θ≤2kπ+$\frac{2π}{3}$,∴kπ+$\frac{π}{6}$≤θ≤kπ+$\frac{π}{3}$,k∈Z ②.
由①②可得,θ∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{π}{3}$],∴sinθ的最大值為$\frac{\sqrt{3}}{2}$,最小值為$\frac{1}{2}$.
∵此矩形的面積為S=tan$\frac{θ}{2}$•(1+cosθ)=$\frac{sin\frac{θ}{2}}{cos\frac{θ}{2}}$•2${cos}^{2}\frac{θ}{2}$=sinθ,
故選:B.
點評 本題主要考查三角函數(shù)的圖象和性質,解關于三角函數(shù)的不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com