12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{2}$)的值為$\sqrt{3}$.

分析 由周期求出ω,由特殊點的坐標(biāo)求出φ的值,可得函數(shù)的f(x)的解析式,從而求得f($\frac{π}{2}$)的值.

解答 解:根據(jù)函數(shù)f(x)=2sin(ωx+φ)(ω>0,且|φ|<$\frac{π}{2}$)的部分圖象,可得$\frac{T}{4}$=$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{6}$+$\frac{π}{12}$,∴ω=2,
再根據(jù)圖象經(jīng)過點($\frac{π}{6}$,0),可得2sin(2•$\frac{π}{6}$+φ)=0,∴φ=-$\frac{π}{3}$,∴f(x)=2sin(2x-$\frac{π}{3}$),
∴f($\frac{π}{2}$)=2sin(π-$\frac{π}{3}$)=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.計算定積分${∫}_{0}^{1}$5xexdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.S=1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+2016}$=$\frac{4032}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)隨機變量X~B(8,$\frac{3}{4}$),則D(X)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知矩形的兩相鄰邊長為tan$\frac{θ}{2}$和1+cosθ,且對于任何實數(shù)x,f(x)=sinθ•x2+$\root{4}{3}$x+cosθ≥0恒成立,則此矩形的面積( 。
A.有最大值1,無最小值B.有最大值$\frac{\sqrt{3}}{2}$,最小值$\frac{1}{2}$
C.有最小值$\frac{\sqrt{3}}{2}$,無最大值D.有最大值1,最小值$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an},{bn},Sn為數(shù)列{an}的前n項和,向量$\overrightarrow{x}$=(1,bn),$\overrightarrow{y}$=(an-1,Sn),$\overrightarrow{x}$∥$\overrightarrow{y}$.
(1)若bn=2,求數(shù)列{an}通項公式;
(2)若bn=$\frac{n}{2}$,a2=0.
①證明:數(shù)列{an}為等差數(shù)列;
②設(shè)數(shù)列{cn}滿足cn=$\frac{{{a_{n+3}}}}{{{a_{n+2}}}}$,問是否存在正整數(shù)l,m(l<m,且l≠2,m≠2),使得cl、c2、cm成等比數(shù)列,若存在,求出l、m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,B是鈍角,且$\sqrt{3}$a=2bsinA.
(1)求B的大。
(2)若△ABC的面積為$\frac{{15\sqrt{3}}}{4}$,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,且f($\frac{π}{2}$)=-$\frac{2}{3}$,則函數(shù)f(x)的表達(dá)式為( 。
A.f(x)=$\frac{2}{3}$cos(3x-$\frac{π}{4}$)B.f(x)=$\frac{2}{3}$cos(3x+$\frac{π}{4}$)C.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x+$\frac{π}{4}$)D.f(x)=$\frac{2}{3}$$\sqrt{2}$cos(3x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平行四邊形ABCD中,AD⊥BD,AD=2,BD=4,點M、N分別為BD、BC的中點,將其沿對角線BD折起成四面體QBCD,使平面QBD⊥平面BCD,P為QC的中點.

(1)求證:PM⊥BD;
(2)求點D到平面QMN的距離.

查看答案和解析>>

同步練習(xí)冊答案