4.已知在三棱柱ABC-A1B1C1中,△ABC為正三角形,AA1⊥平面ABC,且AA1=AB,過(guò)AB做平面α與BC1平行,平面α交平面ACC1A1于直線l,則直線l與BC所成角的余弦值為( 。
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{10}$D.$\frac{\sqrt{5}}{12}$

分析 取AC中點(diǎn)M,A1C1中點(diǎn)N推導(dǎo)出面AB1N∥面BMC1,從而B(niǎo)C1∥面AB1N,進(jìn)而直線AN就是直線l,由此得到∠MC1B1即為直線l與BC所成角(或所成角的補(bǔ)角),由此能求出直線l與BC所成角的余弦值.

解答 解:取AC中點(diǎn)M,A1C1中點(diǎn)N,
∵在三棱柱ABC-A1B1C1中,△ABC為正三角形,AA1⊥平面ABC,且AA1=AB,
∴BM∥B1N,AN∥C1M,
∵AN∩B1N=N,BM∩C1M=M,∴面AB1N∥面BMC1,
∴BC1∥面AB1N,∴直線AN就是直線l,
∵AN∥MC1,BC∥B1C1,∴∠MC1B1即為直線l與BC所成角(或所成角的補(bǔ)角),
設(shè)三棱柱ABC-A1B1C1中棱長(zhǎng)為2,
則B1M=$\sqrt{B{M}^{2}+B{{B}_{1}}^{2}}$=$\sqrt{3+4}=\sqrt{7}$,
${C}_{1}M=\sqrt{1+4}=\sqrt{5}$,
∴cos∠MC1B1=$\frac{{B}_{1}{{C}_{1}}^{2}+M{{C}_{1}}^{2}-B{M}^{2}}{2{B}_{1}{C}_{1}•M{C}_{1}}$=$\frac{4+5-7}{2×2×\sqrt{5}}$=$\frac{\sqrt{5}}{10}$.
∴直線l與BC所成角的余弦值為$\frac{\sqrt{5}}{10}$.
故選:C.

點(diǎn)評(píng) 本題考查兩異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$\overrightarrow{a}$與$\overrightarrow$均為單位向量,它們的夾角為120°,那么|$\overrightarrow{a}$+3$\overrightarrow$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:
愿意做志愿者工作不愿意做志愿者工作合計(jì)
男大學(xué)生610
女大學(xué)生90
合計(jì)800
(1)根據(jù)題意完成表格;
(2)是否有95%的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?
參考公式及數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.250.150.100.050.025
K01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AD=DC=$\sqrt{2}$,AB=PA=2$\sqrt{2}$,且E為線段PB上的一動(dòng)點(diǎn).
(1)若E為線段PB的中點(diǎn),求證:CE∥平面PAD;
(2)當(dāng)直線CE與平面PAC所成角小于$\frac{π}{3}$,求PE長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=$\frac{1}{x}$B.y=5xC.y=-x2+1D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓C:(x-3)2+(y-4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程.
(2)若l與圓C相交于P、Q兩點(diǎn),若$|PQ|=2\sqrt{2}$,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.直線$\left\{\begin{array}{l}{x=3+t}\\{y=2-2t}\end{array}\right.$(t為參數(shù))的斜率為( 。
A.2B.-2C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+2ax+c
(1)若f(x)=f(-2-x),f(0)=-4.求f(x)在[3,+∞)上的最小值:
(2)若對(duì)于任意x∈[1,1+a],f(x)>$\frac{9}{4}$x-a2+c恒成立.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在數(shù)列{an}中,an=(-$\frac{1}{2}$)n,n∈N*,則$\underset{lim}{n→∞}$an(  )
A.等于$-\frac{1}{2}$B.等于0C.等于$\frac{1}{2}$D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案