A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{3}$ | D. | 2 |
分析 由函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得平移后的函數(shù)解析式,又所得的圖象經(jīng)過點$({\frac{3π}{4},0})$,可得cos($\frac{3π}{4}$ω-$\frac{π}{4}$ω-$\frac{π}{2}$)=0,由余弦函數(shù)的性質(zhì)可得:$\frac{3π}{4}$ω-$\frac{π}{4}$ω-$\frac{π}{2}$=kπ+$\frac{π}{2}$,k∈Z,結(jié)合ω的范圍,即可得解ω的最小值.
解答 解:∵將函數(shù)f(x)=cos(ωx-$\frac{π}{2}}$)(ω>0)的圖象向右平移$\frac{π}{4}$個單位長度,
所得的函數(shù)解析式為:y=cos[ω(x-$\frac{π}{4}$)-$\frac{π}{2}}$]=cos(ωx-$\frac{π}{4}$ω-$\frac{π}{2}$),
又∵所得的圖象經(jīng)過點$({\frac{3π}{4},0})$,
∴cos($\frac{3π}{4}$ω-$\frac{π}{4}$ω-$\frac{π}{2}$)=0,可得:$\frac{3π}{4}$ω-$\frac{π}{4}$ω-$\frac{π}{2}$=kπ+$\frac{π}{2}$,k∈Z,解得:ω=2k+2,k∈Z,
又∵ω>0,
∴ωmin=2.
故選:D.
點評 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2,4] | B. | [1,2] | C. | [0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,1) | B. | (1,-1) | C. | (1,2) | D. | (1,-2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com