分析 (1)由題意設(shè)直線AB的方程,代入拋物線方程,利用韋達定理及弦長公式,根據(jù)函數(shù)的單調(diào)性即可求得△OAB面積的最小值;
(2)求導(dǎo),利用點斜式方程,求得求得切線l1,l2的方程,聯(lián)立求得P點坐標,根據(jù)向量的坐標運算,即可求得$\frac{\overrightarrow{FA}•\overrightarrow{FB}}{|\overrightarrow{PF}{|}^{2}}$的值.
解答 解:(1)易知F(0,1).由題意可知,直線AB的斜率存在,可設(shè)直線AB的方程為y=kx+1,
將直線AB的方程與拋物線方程聯(lián)立$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$,整理得:x2-4kx-4=0,-----------(2分)
設(shè)A(x1,$\frac{{x}_{1}^{2}}{4}$),B(x2,$\frac{{x}_{2}^{2}}{4}$),
則x1+x2=4k,x1x2=-4.-----------------(4分)
∴S△AOB=$\frac{1}{2}$×丨OF丨|x1-x2|=$\frac{1}{2}$×|x1-x2|=$\frac{1}{2}$×$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{1}{2}$×$\sqrt{16{k}^{2}+16}$≥2,
當(dāng)k=0時,△AOB的面積最小,最小值為2.----------------(6分)
(2)由x2=4y,得y=$\frac{{x}^{2}}{4}$,則y′=$\frac{x}{2}$,
∴l(xiāng)1的方程為y-$\frac{{x}_{1}^{2}}{4}$=$\frac{{x}_{1}}{2}$(x-x1),即y=$\frac{{x}_{1}x}{2}$-$\frac{{x}_{1}^{2}}{4}$.①
同理可得l2的方程為y=$\frac{{x}_{2}x}{2}$-$\frac{{x}_{2}^{2}}{4}$,②(8分)
由①②得x=$\frac{{x}_{1}+{x}_{2}}{2}$=2k,y=$\frac{{x}_{1}x}{2}$-$\frac{{x}_{1}^{2}}{4}$$\frac{{x}_{1}{x}_{2}}{4}$=-1,----------------(10分)
∴點P的坐標為(2k,-1),
由k∈R,則P點的軌跡方程y=-1.
點評 本題考查直線與橢圓的位置關(guān)系,考查韋達定理,弦長公式,向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{1}{2}$) | B. | (-$\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,1] | D. | [-1,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{3-2\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com