分析 (1)在平面ABC內(nèi),過點(diǎn)P作直線l和BC平行.利用線面平行的判定定理即可證明.
(2)在△ABC中,由AB=AC,D是線段AC的中點(diǎn),可得AD⊥BC,l⊥AD.又AA1⊥底面ABC,可得AA1⊥l.即可證明.
解答 (1)解:在平面ABC內(nèi),過點(diǎn)P作直線l和BC平行.
理由如下:由于直線l不在平面A1BC內(nèi),l∥BC,BC?平面A1BC,
故直線l與平面A1BC平行.
(2)證明:在△ABC中,∵AB=AC,D是線段AC的中點(diǎn),
∴AD⊥BC,又l∥BC,∴l(xiāng)⊥AD.
又∵AA1⊥底面ABC,∴AA1⊥l.
而AA1∩AD=A,
∴直線l⊥平面ADD1A1.
點(diǎn)評 本題考查了線面平行與垂直的判定定理及其性質(zhì)定理、等腰三角形的性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 16 | C. | 18 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題:“若x≠2,則x2-5x+6≠0”的逆否命題是“若x2-5x+6=0,則x=2” | |
B. | “x<1”是“x2-3x+2>0”的充分不必要條件 | |
C. | 若命題“p:?x∈R,x2+x+1≠0”,則“¬p:?x0∈R,x02+x0+1=0” | |
D. | 若“p∨q”為真命題,則p,q均為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí)間不超過4小時(shí) | 45 | 30 | 75 |
每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí) | 165 | 60 | 225 |
總計(jì) | 210 | 90 | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y=0 | B. | 2x-y-2=0 | C. | x+2y-3=0 | D. | x+2y-5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “x2=1”是“x=1”的充分不必要條件 | |
B. | “x=2時(shí),x2-3x+2=0”的否命題為真命題 | |
C. | 命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
D. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com