cos
8
cos
π
8
=
 
考點:二倍角的正弦,運用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:由誘導(dǎo)公式化簡后,再由二倍角公式及特殊角的三角函數(shù)值即可求值.
解答: 解:cos
8
cos
π
8
=cos(
π
2
+
π
8
)cos
π
8
=-sin
π
8
cos
π
8
=-
1
2
sin
π
4
=-
2
4

故答案為:-
2
4
點評:本題主要考查了二倍角的正弦公式的應(yīng)用,運用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足的約束條件:
x+y≥2
x-y≤2
0≤y≤3
.則z=x-3y的最小值( 。
A、-4B、-6C、-8D、-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3x-2,x∈{1,2,3,4},則它的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△A BC中,a,b,c分別是角 A,B,C的對邊,cosB=
3
5
且ac=35.
(1)求△ABC的面積;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x
+2xf′(1),試比較f(e)與f(1)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x
2x2+2
,x∈[0,2].
(1)求使方程f(x)-k=0(k∈R)存在兩個不同實數(shù)解時k的取值范圍;
(2)設(shè)函數(shù)g(x)=lnx+
1
2
x2-2x-m(x∈[1,3]),若對任意x1∈[0,2],總存在x0∈[1,3],使f(x1)-g(x0)=0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P在角-
10π
3
的終邊上,且P的坐標(biāo)為(-1,y),則y等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(-1+2x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x+2≥0},B={x|mx2-4x+m-1>0,m∈R},若A∩B=∅,且A∪B=A,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案