【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)將C1的方程化為直角坐標方程;
(2)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

【答案】
(1)解:曲線C1的方程為ρsin(θ+ )+2 =0,展開可得: + +2 =0,可得直角標準方程: y+x+4 =0
(2)解:設(shè)點Q(2cosθ,2sinθ),則點Q到直線C1的距離d= = +2 ≥2 ﹣2,當且僅當 =﹣1時取等號.

∴|PQ|的最小值為2 ﹣2


【解析】(1)曲線C1的方程為ρsin(θ+ )+2 =0,展開可得: + +2 =0,利用 代入即可得出直角標準方程.(2)設(shè)點Q(2cosθ,2sinθ),可得點Q到直線C1的距離d= +2 ,利用三角函數(shù)的單調(diào)性值域即可得出最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當x>0時,函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過點( , ),且原點、焦點,短軸的端點構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.

(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定圓,動圓過點 且與圓相切,記圓心的軌跡為

(1)求曲線的方程;

(2)已知直線 交圓兩點.是曲線上兩點,若四邊形的對角線,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面立角坐標系中,過點的圓的圓心軸上,且與過原點傾斜角為的直線相切.

(1)求圓的標準方程;

(2)在直線上,過點作圓的切線、,切點分別為、,求經(jīng)過、、四點的圓所過的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】駐馬店市政府委托市電視臺進行“創(chuàng)建森林城市”知識問答活動,市電視臺隨機對該市15~65歲的人群抽取了人,繪制出如圖1所示的頻率分布直方圖,回答問題的統(tǒng)計結(jié)果如表2所示.

(1)分別求出的值;

(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應(yīng)各抽取多少人?

(3)在(2)的條件下,電視臺決定在所抽取的7人中隨機選2人頒發(fā)幸運獎,求所抽取的人中第二組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解當下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機再選出2人調(diào)查其平時體育鍛煉習慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

同步練習冊答案