【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動(dòng)點(diǎn)到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
分析:由雙曲線的右頂點(diǎn)到漸近線的距離求出,從而可確定雙曲線的方程和焦點(diǎn)坐標(biāo),進(jìn)而得到拋物線的方程和焦點(diǎn),然后根據(jù)拋物線的定義將點(diǎn)M到直線的距離轉(zhuǎn)化為到焦點(diǎn)的距離,最后結(jié)合圖形根據(jù)“垂線段最短”求解.
詳解:由雙曲線方程可得,
雙曲線的右頂點(diǎn)為,漸近線方程為,即.
∵雙曲線的右頂點(diǎn)到漸近線的距離等于,
∴,解得,
∴雙曲線的方程為,
∴雙曲線的焦點(diǎn)為.
又拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,
∴,
∴拋物線的方程為,焦點(diǎn)坐標(biāo)為.如圖,
設(shè)點(diǎn)M到直線的距離為,到直線的距離為,則,
∴.
結(jié)合圖形可得當(dāng)三點(diǎn)共線時(shí),最小,且最小值為點(diǎn)F到直線的距離.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)按月訂購(gòu)一種家用電暖氣,每銷(xiāo)售一臺(tái)獲利潤(rùn)200元,未銷(xiāo)售的產(chǎn)品返回廠家,每臺(tái)虧損50元,根據(jù)往年的經(jīng)驗(yàn),每天的需求量與當(dāng)天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺(tái);最低氣溫位于區(qū)間,需求量為200臺(tái);最低氣溫位于區(qū)間,需求量為300臺(tái)。公司銷(xiāo)售部為了確定11月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年11月份各天的最低氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) | |||||
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量(單位:臺(tái))的分布列;
若公司銷(xiāo)售部以每日銷(xiāo)售利潤(rùn)(單位:元)的數(shù)學(xué)期望為決策依據(jù),計(jì)劃11月份每日訂購(gòu)200臺(tái)或250臺(tái),兩者之中選其一,應(yīng)選哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的不等式(為實(shí)數(shù))的解集為,集合.
(1)若,求的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動(dòng)點(diǎn).
(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過(guò)的圖形面積;
(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開(kāi)始第4次發(fā)球時(shí)乙的得分,求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;
(2)指出函數(shù)y=的圖象可以由函數(shù)y=sinx的圖象經(jīng)過(guò)哪些變換得到;
(3)當(dāng)x∈[0,m]時(shí),函數(shù)y=f(x)的值域?yàn)?/span>,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)“定速巡航”技術(shù)是用于控制汽車(chē)的定速行駛,當(dāng)汽車(chē)被設(shè)定為定速巡航狀態(tài)時(shí),電腦根據(jù)道路狀況和汽車(chē)的行駛阻力自動(dòng)控制供油量,使汽車(chē)始終保持在所設(shè)定的車(chē)速行駛,而無(wú)需司機(jī)操縱油門(mén),從而減輕疲勞,促進(jìn)安全,節(jié)省燃料.某汽車(chē)公司為測(cè)量某型號(hào)汽車(chē)定速巡航狀態(tài)下的油耗情況,選擇一段長(zhǎng)度為240km的平坦高速路段進(jìn)行測(cè)試.經(jīng)多次測(cè)試得到一輛汽車(chē)每小時(shí)耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):
v | 0 | 40 | 60 | 80 | 120 |
F | 0 | 10 | 20 |
為了描述汽車(chē)每小時(shí)耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:
,,.
(1)請(qǐng)選出你認(rèn)為最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.
(2)這輛車(chē)在該測(cè)試路段上以什么速度行駛才能使總耗油量最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)榧?/span>.
(1)若,求的取值范圍;
(2)若存在兩個(gè)不相等負(fù)實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),滿足“對(duì)于任意,都有;對(duì)于任意的.都有”,若存在,求出的值,若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com