如圖,正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)在沿SE、SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1、G2、G3三點(diǎn)重合,重合后的點(diǎn)記作G,則在四面體S-EFG中必有

[  ]

A.SG⊥△EFG所在平面

B.SD⊥△EFG所在平面

C.GF⊥△SEF所在平面

D.GD⊥△SEF所在平面

答案:A
提示:

圖形翻折問(wèn)題,首先應(yīng)注意折起前后的變與不變,以備運(yùn)用定理可得出什么結(jié)論.由折起前后的不變量可知SG⊥GE,SG⊥GF,從而SG⊥面EFG(判定定理).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD中,已知AB=2,若N為正方形內(nèi)(含邊界)任意一點(diǎn),則
AB
AN
的最大值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABED、直角梯形EFGD、直角梯形ADGC所在平面兩兩垂直,AC∥DG∥EF.且DA=DE=DG=2,AC=EF=1.
(Ⅰ)求證:四點(diǎn)B、C、G、F共面;
(Ⅱ)求二面角D-BC-F的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線段BE上存在點(diǎn)M,使得直線AM與平面EAD所成角的正弦值為
6
3
,試確定點(diǎn)M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•金華模擬)如圖,正方形ABCD的邊長(zhǎng)為2
2
,四邊形BDEF是平行四邊形,BD與AC交于點(diǎn)G,O為GC的中點(diǎn),且FO⊥平面ABCD.  
(1)求證:FC∥平面ADE;
(2)當(dāng)平面AEF⊥平面CEF時(shí),求二面角F-BD-C的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD-A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=
1
2
,則下列結(jié)論中錯(cuò)誤的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案