【題目】一個總體容量為60,其中的個體編號為00,01,02,…,59.現(xiàn)需從中抽取一個容量為7的樣本,請從隨機(jī)數(shù)表的倒數(shù)第5行(下表為隨機(jī)數(shù)表的最后5行)第11~12列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
【答案】18,05,07,35,59,26,39.
【解析】
從隨機(jī)數(shù)表的倒數(shù)第5行第11~12列開始,依次向下,到最后一行后向右讀取兩位數(shù),大于等于60的數(shù)據(jù)應(yīng)舍去,與前面取到的數(shù)據(jù)重復(fù)的也舍去,直到取足7個樣本號碼為止.
解:根據(jù)題意,60個個體編號為00,01,,59,現(xiàn)從中抽取一容量為7的樣本,
從隨機(jī)數(shù)表的倒數(shù)第5行第11~12列開始,向下讀取,到最后一行后向右
18,81(舍去),90(舍去),82(舍去),05,98(舍去),90(舍去),07,35,82(舍去),96(舍去),59,26,94(舍去),66(舍去),39共7個;
所以抽取樣本的號碼是18,00,46,40,54,20,56.
故答案為:18,05,07,35,59,26,39.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個“線性覆蓋函數(shù)”.給出如下四個結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個;
③為函數(shù)的一個“線性覆蓋函數(shù)”;
④若為函數(shù)的一個“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號是___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時, ,當(dāng)時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時, ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時, ;當(dāng)時, .
①當(dāng)時, ,即,這時, ;
②當(dāng)時, ,即,這時, .
綜上, 在上的最大值為:當(dāng)時, ;
當(dāng)時, .
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價(jià)變形轉(zhuǎn)化為兩個函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)任作一直線交拋物線于兩點(diǎn),過兩點(diǎn)分別作拋物線的切線.
(Ⅰ)記的交點(diǎn)的軌跡為,求的方程;
(Ⅱ)設(shè)與直線交于點(diǎn)(異于點(diǎn)),且,.問是否為定值?若為定值,請求出定值.若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個總體的100個個體編號為0,1,2,…,99,并依次將其分為10個組,組號為0,1,2,…,9.要用系統(tǒng)抽樣法抽取一個容量為10的樣本,如果在第0組(號碼為0—9)隨機(jī)抽取的號碼為2,則抽取的10個號碼為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為建立健全國家學(xué)生體質(zhì)健康監(jiān)測評價(jià)機(jī)制,激勵學(xué)生積極參加身體鍛煉,教育部印發(fā)《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)(2014年修訂)》,要求各學(xué)校每學(xué)期開展覆蓋本校各年級學(xué)生的《標(biāo)準(zhǔn)》測試工作,并根據(jù)學(xué)生每個學(xué)期總分評定等級.某校決定針對高中學(xué)生,每學(xué)期進(jìn)行一次體質(zhì)健康測試,以下是小明同學(xué)六個學(xué)期體質(zhì)健康測試的總分情況.
學(xué)期 | 1 | 2 | 3 | 4 | 5 | 6 |
總分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明與的線性相關(guān)程度,并用最小二乘法求出關(guān)于的線性回歸方程(線性相關(guān)系數(shù)保留兩位小數(shù));
(2)在第六個學(xué)期測試中學(xué)校根據(jù) 《標(biāo)準(zhǔn)》,劃定540分以上為優(yōu)秀等級,已知小明所在的學(xué)習(xí)小組10個同學(xué)有6個被評定為優(yōu)秀,測試后同學(xué)們都知道了自己的總分但不知道別人的總分,小明隨機(jī)的給小組內(nèi)4個同學(xué)打電話詢問對方成績,優(yōu)秀的同學(xué)有人,求的分布列和期望.
參考公式: ,;
相關(guān)系數(shù);
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:
(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)對任意的x∈R,都有f(x) +f(x)=0.
求同時滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時,f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的離心率,左、右焦點(diǎn)分別為、,直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)當(dāng)直線與橢圓相切,交于點(diǎn),,當(dāng)時,求的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com