精英家教網 > 高中數學 > 題目詳情
5.函數$y=sin(x-\frac{π}{3})$的圖象的一條對稱軸是(  )
A.$x=\frac{π}{6}$B.$x=-\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

分析 根據正弦函數圖象對稱軸的公式,令x-$\frac{π}{3}$=$\frac{π}{2}$+kπ(k∈Z),求出函數圖象的對稱軸方程即可.

解答 解:令x-$\frac{π}{3}$=$\frac{π}{2}$+kπ(k∈Z),
解得x=$\frac{5π}{6}$+kπ(k∈Z),
∴函數y=sin(x-$\frac{π}{3}$)圖象的對稱軸方程為
x=$\frac{5π}{6}$+kπ(k∈Z),
k=-1時,得x=-$\frac{π}{6}$為函數y圖象的一條對稱軸.
故選:B.

點評 本題考查了正弦函數的圖象與性質的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=|x+a|+|x+3|,g(x)=|x-1|+2.
(1)解不等式|g(x)|<3;
(2)若對任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為$\frac{3}{5}$.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知i是虛數單位,復數z滿足(z-2)i=-3-i.
(1)求z;
(2)若復數$\frac{x+i}{z}$在復平面內對應的點在第一象限,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.直線x+y-2=0與坐標軸圍成的三角形的面積為( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.在2×2列聯(lián)表中,兩個比值相差越大,兩個分類變量有關系的可能性就越大,那么這兩個比值為(  )
A.$\frac{a}{a+b}$與$\frac{c}{c+d}$B.$\frac{a}{c+d}$與$\frac{c}{a+b}$C.$\frac{a}{a+d}$與$\frac{c}{b+c}$D.$\frac{a}{b+d}$與$\frac{c}{a+c}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.函數y=arccosx在$x∈(-1,\frac{1}{2}]$的值域是$[\frac{π}{3},π)$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.某省工商局于2014年3月份,對全省流通領域的飲料進行了質量監(jiān)督抽查,結果顯示,某種剛進入市場的x飲料的合格率為80%,現有甲、乙、丙3人聚會,選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是0.64(用數字作答).

查看答案和解析>>

同步練習冊答案