9.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,BQ⊥AD,線段PC上是否存在點(diǎn)M,使得PA∥平面MQB?

分析 連接AC交BQ于N,連接MN,由相似三角形可得$\frac{AN}{AC}=\frac{1}{3}$,故當(dāng)$\frac{PM}{PC}=\frac{1}{3}$時,PA∥MN,于是PA∥平面MQB.

解答 解:當(dāng)M為PC的靠近P的三等分點(diǎn)時,PA∥平面MQB.
證明如下:連接AC交BQ于N,連接MN.
∵∠BAD=60°,BQ⊥AD,
∴AQ=ABcos60°=$\frac{1}{2}$AB=$\frac{1}{2}AD$,
∴Q為AD的中點(diǎn).
∵AQ∥BC,
∴△AQN∽△CBN,
∴$\frac{AN}{CN}=\frac{AQ}{BC}$=$\frac{1}{2}$,
∴$\frac{AN}{AC}=\frac{1}{3}$.又$\frac{PM}{PC}$=$\frac{1}{3}$,
∴$\frac{AN}{AC}=\frac{PM}{PC}$,∴MN∥PA,
又MN?平面MQB,PA?平面MQB,
∴PA∥平面MQB.

點(diǎn)評 本題考查了線面平行的判定,計(jì)算$\frac{AN}{AC}$是確定M點(diǎn)位置的關(guān)鍵,屬于中檔題,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知球O的一個內(nèi)接三棱錐P-ABC,其中△ABC是邊長為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,AA1,BB1均垂直于平面ABC和平面A1B1C1,∠BAC=∠A1B1C1=90°,AC=AB=A1A=B1C1=$\sqrt{2}$,則多面體ABC-A1B1C1的外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面用“三段論”形式寫出的演繹推理:因?yàn)閷?shù)函數(shù)y=logax(a>0且a≠1)在(0,+∞)上是增函數(shù),y=log${\;}_{\frac{1}{2}}$x是對數(shù)函數(shù),所以y=log${\;}_{\frac{1}{2}}$x在(0,+∞)上是增函數(shù),該結(jié)論顯然是錯誤的,其原因是( 。
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.以上都可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題:
(1)夾在兩平行平面間的兩個幾何體,被一個平行于這兩個平面的平面所截,若截得兩個截面的面積總相等,則這兩個幾何體的體積出相等;
(2)直棱柱和圓柱側(cè)面展開圖都是矩形;
(3)斜棱柱的體積等于與它的一條側(cè)棱垂直的截面面積乘以它的一條側(cè)棱;
(4)平行六面體的對角線交于一點(diǎn),且互相平分;
其中正確的個數(shù)是( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足an+1=$\frac{1}{2}$an+t,a1=$\frac{1}{2}$(t為常數(shù),且t≠$\frac{1}{4}$).
(1)證明:{an-2t}為等比數(shù)列;
(2)當(dāng)t=-$\frac{1}{8}$時,求數(shù)列{an}的前幾項(xiàng)和最大?
(3)當(dāng)t=0時,設(shè)cn=4an+1,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7對任意的n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=cosαsinx+$\frac{3}{5}$cosx+1,α為常數(shù),α∈[$\frac{3π}{2}$,2π],且f($\frac{3π}{2}$)=$\frac{1}{5}$.
(1)求sinα和cos2α的值;
(2)求f(x)的最大值、最小值及最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在區(qū)間(0,1)上隨機(jī)取兩個實(shí)數(shù)m,n,則關(guān)于x的一元二次方程x2-2$\sqrt{m}$x+2n=0有實(shí)數(shù)根的概率為(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義運(yùn)算a*b為執(zhí)行如圖所示的程序框圖輸出的S值,則(sin$\frac{5π}{12}}$)*(${cos\frac{5π}{12}}$)的值為( 。
A.$\frac{{2-\sqrt{3}}}{4}$B.$\frac{{2+\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案