19.已知球O的一個內(nèi)接三棱錐P-ABC,其中△ABC是邊長為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為$\frac{4\sqrt{2}}{3}$.

分析 過O作平面ABC的垂線OM,則M為△ABC的中心,利用勾股定理計算出OM,則P到平面ABC的距離為2OM,再代入棱錐的體積公式計算.

解答 解:過球心O作OM⊥平面ABC,垂足為M,連接OM.
∵△ABC是邊長為2的正三角形,∴M為△ABC的中心,
∴CM=$\frac{2\sqrt{3}}{3}$,OM=$\sqrt{O{C}^{2}-C{M}^{2}}$=$\frac{2\sqrt{6}}{3}$.
∵O是PC的中點,∴P到平面ABC的距離d=2OM=$\frac{4\sqrt{6}}{3}$.
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•d$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}×\frac{4\sqrt{6}}{3}$=$\frac{4\sqrt{2}}{3}$.
故答案為:$\frac{4\sqrt{2}}{3}$.

點評 本題考查了棱錐與外接球的關(guān)系,棱錐的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{\sqrt{2}{a}_{n}}{\sqrt{{{a}_{n}}^{2}+2}}$(n∈N*
(1)證明{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項和為Sn,已知存在正整數(shù)m,使得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<m對n∈N+恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知二項式${(ax+\frac{1}{x})^4}$的展開式中x2項的系數(shù)為32,則實數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2)
(1)求曲線在點P處的切線方程;
(2)求曲線過點P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在凸四邊形ABCD中,C,D為定點,CD=$\sqrt{3}$,A,B為動點,滿足AB=BC=DA=1.
(1)若C=$\frac{π}{4}$,求cosA;
(2)設(shè)△BCD和△ABD的面積分別為S和T,求S2+T2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夾角為60°的兩個單位向量,$\overrightarrow{a}$=3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=2$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,求$\overrightarrow{a}$•$\overrightarrow$;
(2)已知$\overrightarrow a=(3,4),\overrightarrow b=(2,-1),求$$\overrightarrow{a}$•$\overrightarrow$,$\overrightarrow a在\overrightarrow b方向上的投影$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\left\{\begin{array}{l}sinπx(x<0)\\ f(x-1)-1(x>0)\end{array}$,
(1)求$f(-\frac{1}{4})$的值;  
(2)求$f(\frac{5}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的導(dǎo)數(shù).
(1)y=x2sinx;
(2)$y=\frac{lnx}{x}$;
(3)y=ln(2x-5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,BQ⊥AD,線段PC上是否存在點M,使得PA∥平面MQB?

查看答案和解析>>

同步練習(xí)冊答案