分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),利用z的幾何意義即可得到結(jié)論..
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x+4y得y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
平移直線y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{4}$x+$\frac{1}{4}$z經(jīng)過(guò)點(diǎn)A時(shí),
直線的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
即A(4,5),此時(shí)zmax=4+4×5=24,
故答案為:24.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $±\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ab>b2 | B. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b | ||
C. | log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com