20.已知數(shù)列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能為等比數(shù)列?若可能,求出此等比數(shù)列的通項公式;若不可能,說明理由;
(2)設(shè)bn=(-1)n(an+n+2),Sn為數(shù)列{bn}的前n項和,且對于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范圍.

分析 (1)由題意求得a2,a3,a4,假設(shè){an}為等比數(shù)列,可知a1,a2,a3成等比數(shù)列,(2a1+2)2=a1•(4a1+7),即可求得a1=-4,a2=-6,a3=-9,a4=-14,可知{an}不可能為等比數(shù)列;
(2)由題意可知:求得an和an+1,代入求得bn+1=-2bn,由等比數(shù)列通項公式求得Sn=$\frac{-({a}_{1}+3)[1-(-2)^{n}]}{3}$,分類當(dāng)n為奇數(shù)和偶數(shù)時,分別求得a1的取值范圍.

解答 解:(1)由題意可知:an+1=2an+n+1,
得a2=2a1+2,a3=4a1+7,a4=8a1+18,
若{an}為等比數(shù)列.則a1,a2,a3成等比數(shù)列,
∴(2a1+2)2=a1•(4a1+7),解得:a1=-4,
a1=-4,a2=-6,a3=-9,a4=-14,不成等比數(shù)列,
∴{an}不可能為等比數(shù)列;
(2)∵bn=(-1)n(an+n+2),
∴an=(-1)nbn-n-2,an+1=(-1)n+1bn+1-n-3,
將其代入an+1=2an+n+1,
(-1)n+1bn+1-n-3=2[(-1)nbn-n-2]+n+1,
整理得:bn+1=-2bn,其中b1=-(a1+3),
當(dāng)a1=-3時,bn=0,Sn=0符合題意,
當(dāng)a1≠-3時,
數(shù)列{bn}是以b1=-(a1+3)為首項,以-2為公比的等比數(shù)列,
∴Sn=$\frac{-({a}_{1}+3)[1-(-2)^{n}]}{3}$,
當(dāng)n為偶數(shù)時,且n≤10時,
由Sn<1,可得$\frac{-({a}_{1}+3)(1-{2}^{n})}{3}$<1,
∴-(a1+3)>$\frac{3}{1-{2}^{\\;n}}$,
∴-(a1+3)>$\frac{3}{1-{2}^{10}}$,解得:a1<-$\frac{1022}{341}$,
當(dāng)n為奇數(shù)時,且n≤10,
由Sn<1,$\frac{-({a}_{1}+3)(1+{2}^{n})}{3}$<1,
∴-(a1+3)>$\frac{3}{1+{2}^{\\;n}}$,
∴-(a1+3)<$\frac{3}{1+{2}^{9}}$,
解得:a1>-$\frac{571}{171}$,
綜上,a1的取值范圍為(-$\frac{571}{171}$,-$\frac{1022}{341}$)

點評 本題考查等比數(shù)列通項公式及前n項和公式,考查數(shù)列與不等式相結(jié)合,考查分類討論思想,考查計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A=B=R,映射f:A→B把集合A中的元素x映射到集合B中的元素x2+1,則在映射f下,象5的原象是(  )
A.26B.2C.-2D.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)f(x)=$\frac{1}{3}$x3-x2-8x+6的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,M為DD1的中點,P為棱A1B1的中點,則異面直線OP與MA所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|-2≤x≤4},B={x|a-2≤x≤2a},若A∩B=B,則a得取值范圍為( 。
A.[0,2]B.(-∞,-2]C.(-∞,-2)∪[0,2]D.(-∞,-2]∪[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三次函數(shù)y=f(x)=ax3-1在(-∞,+∞)內(nèi)是減函數(shù),則( 。
A.a=1B.a=2C.a≤0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}}$,則z=x+4y的最大值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=f(x)是函數(shù)y=logax(a>0,a≠1)的反函數(shù),若f(x)的圖象過點$(2,\frac{1}{4})$,則log2f(-1)的值為( 。
A.1B.2C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=aln(x+1)-x2在(0,2)內(nèi)任取兩個實數(shù)m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,則實數(shù)a的取值范圍是( 。
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

同步練習(xí)冊答案