17.設(shè)F為拋物線C:y2=2px(p>0)的焦點,曲線y=$\frac{k}{x}$(k>0)與C交于點A,直線FA恰與曲線y=$\frac{k}{x}$(k>0)相切于點A,F(xiàn)A交C的準(zhǔn)線于點B,則$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 求出切線方程,利用曲線y=$\frac{k}{x}$(k>0)與C交于點A,用p表示m,n,即可得出結(jié)論.

解答 解:設(shè)A(m,n),則由y=$\frac{k}{x}$可得y′=-$\frac{k}{{x}^{2}}$,
∴過F的切線方程為y=-$\frac{k}{{m}^{2}}$(x-$\frac{p}{2}$),
代入A,可得n=-$\frac{k}{{m}^{2}}$(m-$\frac{p}{2}$),
∵n2=2pm,k=mn,
∴m=$\frac{p}{4}$,n=$\frac{\sqrt{2}}{2}$p,
∴-$\frac{k}{{m}^{2}}$=-$\frac{n}{m}$=-2$\sqrt{2}$,
設(shè)切線的傾斜角為α,A在準(zhǔn)線上的射影為C,則tanα=-2$\sqrt{2}$,∴cosα=-$\frac{1}{3}$,
∴$\frac{|FA|}{|BA|}$=$\frac{|AC|}{|AB|}$=-cosα=$\frac{1}{3}$,
故選:B.

點評 本題考查切線方程,考查拋物線的方程與定義的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,2),若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)等于( 。
A.5B.10C.-$\frac{5}{4}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,$A=\frac{π}{3},AB=2$,其面積等于$\frac{{\sqrt{3}}}{2}$,則BC等于( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若y=sin($\frac{π}{2}$+x),則y′=-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC中,D為BC邊上一點,∠BAD=∠CAD,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=$\frac{π}{3}$,則$\overrightarrow{AD}•\overrightarrow{BC}$=( 。
A.$-\frac{8}{5}$B.$\frac{9}{5}$C.$-\frac{9}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=ex(-x2+2x+a)在區(qū)間[a,a+1]上單調(diào)遞增,則實數(shù)a的最大值為$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若對任意的θ∈R,直線(x-2)cosθ+ysinθ+a=0與圓x2+y2-4x=0相切,則實數(shù)a的值是±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某羽絨服賣場為了解氣溫對營業(yè)額的影響,營業(yè)員小孫隨機(jī)記錄了該店3月份上旬中某5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(1)求y關(guān)于x的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若天氣預(yù)報明天的最低氣溫為12℃,用所求回歸方程預(yù)測該店明天的營業(yè)額;
(3)設(shè)該地3月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差,求P(0.6<X<10.2).
附:(1)回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{n}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287.
(2)$\sqrt{10}$=3.2;若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6827.P(μ-2σ<X<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1+i}{1-i}$•z=3+4i,則z的共軛復(fù)數(shù)為(  )
A.4+3iB.-4+3iC.-4-3iD.4-3i

查看答案和解析>>

同步練習(xí)冊答案