已知函數(shù)
(1)求函數(shù)的對稱軸方程;
(2)當時,若函數(shù)有零點,求m的范圍;
(3)若,,求的值.
科目:高中數(shù)學 來源: 題型:解答題
函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如右圖所示,設(shè)兩函數(shù)的圖象交于點A(x1,y1),B(x2,y2),且x1<x2.
(1)請指出示意圖中曲線C1,C2分別對應哪一個函數(shù)?
(2)若x1∈,x2∈,且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12}指出a,b的值,并說明理由;
(3)結(jié)合函數(shù)圖象示意圖,判斷f(6),g(6),f(2010),g(2010)的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)
某民營企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖一所示;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖二所示(利潤與投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù), 其中為常數(shù),且函數(shù)圖像過原點.
(1) 求的值;
(2) 證明函數(shù)在[0,2]上是單調(diào)遞增函數(shù);
(3) 已知函數(shù), 求函數(shù)的零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題8分)經(jīng)過調(diào)查發(fā)現(xiàn),某種新產(chǎn)品在投放市場的30天中,前20天其價格直線上升,后10天價格呈直線下降趨勢,F(xiàn)抽取其中4天的價格如下表所示:
時間 | 第4天 | 第12天 | 第20天 | 第28天 |
價格 (千元) | 34 | 42 | 50 | 34 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù) (∈R).
(Ⅰ)試給出的一個值,并畫出此時函數(shù)的圖象;
(Ⅱ)若函數(shù) f (x) 在上具有單調(diào)性,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間、極值;
(2)若當時,恒有,試確定的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)是定義在上的偶函數(shù),當時,
(1)求的解析式;
(2)討論函數(shù)的單調(diào)性,并求的值域。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)已知函數(shù).
(1)求這個函數(shù)的圖象在點處的切線方程;
(2)討論這個函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com