【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2的極坐標(biāo)方程為ρ4sinθ.

1)求C1的直角坐標(biāo)方程與C2的直角坐標(biāo)方程;

2)已知射線C1交于O,P兩點(diǎn),與C2交于OQ兩點(diǎn),且QOP的中點(diǎn),求α.

【答案】1x24y;x2+y224;2α

【解析】

1)利用代入消參法把參數(shù)方程化成直角坐標(biāo)方程;用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式進(jìn)行求解即可;

2)將直角坐標(biāo)方程為x24y,轉(zhuǎn)換為極坐標(biāo)方程,通過解方程和特殊角的三角函數(shù)值求出α.

1)曲線C1的參數(shù)方程t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x24y.

曲線C2的極坐標(biāo)方程為ρ4sinθ,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y24y,整理得x2+y224.

2)射線C1交于OP兩點(diǎn),

直角坐標(biāo)方程為x24y,轉(zhuǎn)換為極坐標(biāo)方程為ρ2cos2α4ρsinα,整理得.

C2交于O,Q兩點(diǎn),所以ρ14sinα,

QOP的中點(diǎn),所以,

整理得

整理得

解得α.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,,,面,的中點(diǎn).

1)求證:;

2)在線段上是否存在一點(diǎn),使得?若存在,請證明你的結(jié)論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線的參數(shù)方程是為參數(shù)),圓的極坐標(biāo)方程是.

1)求圓的直角坐標(biāo)方程;

2)過直線上的一點(diǎn)作一條傾斜角為的直線與圓交于、兩點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差為的等差數(shù)列, 是公比為的等比數(shù)列,,正整數(shù)組.

(1)若,求的值;

(2)若數(shù)組中的三個(gè)數(shù)構(gòu)成公差大于的等差數(shù)列,且,求的最大值.

(3)若,試寫出滿足條件的一個(gè)數(shù)組和對應(yīng)的通項(xiàng)公式.(注:本小問不必寫出解答過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中,為正實(shí)數(shù).

1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;

2)設(shè),證明:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為.

1)求橢圓的離心率;

2)設(shè)為坐標(biāo)原點(diǎn),為直線上一點(diǎn),過的垂線交橢圓于.當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:

同意

不同意

合計(jì)

男生

a

5

女生

40

d

合計(jì)

100

(1)求 a,d 的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請說明理由;

(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4 位學(xué)生進(jìn)行長期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為 X,求 X 的分布列及數(shù)學(xué)期望.

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.函數(shù)的導(dǎo)函數(shù)上存在零點(diǎn).

求實(shí)數(shù)的取值范圍;

若存在實(shí)數(shù),當(dāng)時(shí),函數(shù)時(shí)取得最大值,求正實(shí)數(shù)的最大值;

若直線與曲線都相切,且軸上的截距為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,角的對邊分別為,且.

(1)求的值;

(2)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案