已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當(dāng)時(shí),函數(shù)的圖象與軸交于兩點(diǎn),且,又是的導(dǎo)函數(shù).若正常數(shù)滿(mǎn)足條件.證明:.
(1)-1;(2);(3)詳見(jiàn)解析.
【解析】
試題分析:(1)根據(jù)利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值的方法即可求得.
(2)首先將代入得,然后求導(dǎo):.
在區(qū)間上不單調(diào),那么方程在(0,3)上應(yīng)有實(shí)數(shù)解,且不是重根即解兩側(cè)的導(dǎo)數(shù)值小于0.
將方程變形分離變量得:.下面就研究函數(shù),易得函數(shù)在上單調(diào)遞增,所以,().結(jié)合圖象知,時(shí),在(0,3)上有實(shí)數(shù)解.這些解會(huì)不會(huì)是重根呢?
由得:,若有重根,則或.這說(shuō)明時(shí),沒(méi)有重根. 由此得:.
(3)時(shí),,所以.有兩個(gè)實(shí)根,則將兩根代入方程,可得.
再看看待證不等式:,這里面不僅有,還有,那么是否可以消去一些字母呢?
將兩式相減,得, 變形得:
, 將此式代入上面不等式即可消去,整理可得:
,再變形得:.下面就證這個(gè)不等式.這類(lèi)不等式就很常見(jiàn)了,一般是將看作一個(gè)整體,令,又轉(zhuǎn)化為 ,只需證即可.而這利用導(dǎo)數(shù)很易得證.
試題解析:(1)
函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù), 3分
所以. 4分
(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030606392183404042/SYS201403060640053183532370_DA.files/image004.png">,所以, 5分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030606392183404042/SYS201403060640053183532370_DA.files/image006.png">在區(qū)間上不單調(diào),所以在(0,3)上有實(shí)數(shù)解,且無(wú)重根,
由,有=,() 6分
又當(dāng)時(shí),有重根;時(shí),有重根. 7分
綜上 8分
(3)∵,又有兩個(gè)實(shí)根,
∴,兩式相減,得,
∴, 10分
于是
. 11分
.
要證:,只需證:
只需證:.(*) 12分
令,∴(*)化為 ,只證即可. 在(0,1)上單調(diào)遞增,,即.∴. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等式的證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),其中
(1) 當(dāng)滿(mǎn)足什么條件時(shí),取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),.
(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)當(dāng)且時(shí),證明:對(duì),;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱(chēng)數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時(shí),求函數(shù) 的最小值;
(2)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com