已知函數(shù),其中
(1) 當(dāng)滿足什么條件時(shí),取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
解析: (1)由已知得,令,得,
要取得極值,方程必須有解,
所以△,即, 此時(shí)方程的根為
,,
所以
當(dāng)時(shí),
x | (-∞,x1) | x 1 | (x1,x2) | x2 | (x2,+∞) |
f’(x) | + | 0 | - | 0 | + |
f (x) | 增函數(shù) | 極大值 | 減函數(shù) | 極小值 | 增函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
當(dāng)時(shí),
x | (-∞,x2) | x 2 | (x2,x1) | x1 | (x1,+∞) |
f’(x) | - | 0 | + | 0 | - |
f (x) | 減函數(shù) | 極小值 | 增函數(shù) | 極大值 | 減函數(shù) |
所以在x 1, x2處分別取得極大值和極小值.
綜上,當(dāng)滿足時(shí), 取得極值.
(2)要使在區(qū)間上單調(diào)遞增,需使在上恒成立.
即恒成立, 所以
設(shè),,
令得或(舍去),
當(dāng)時(shí),,當(dāng)時(shí),單調(diào)增函數(shù);
當(dāng)時(shí),單調(diào)減函數(shù),
所以當(dāng)時(shí),取得最大,最大值為.
所以
當(dāng)時(shí),,此時(shí)在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當(dāng)時(shí)最大,最大值為,所以
綜上,當(dāng)時(shí), ; 當(dāng)時(shí),
【命題立意】:本題為三次函數(shù),利用求導(dǎo)的方法研究函數(shù)的極值、單調(diào)性和函數(shù)的最值,函數(shù)在區(qū)間上為單調(diào)函數(shù),則導(dǎo)函數(shù)在該區(qū)間上的符號(hào)確定,從而轉(zhuǎn)為不等式恒成立,再轉(zhuǎn)為函數(shù)研究最值.運(yùn)用函數(shù)與方程的思想,化歸思想和分類討論的思想解答問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年大豐調(diào)研) (16分)
已知函數(shù)(其中) ,
點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.
(Ⅰ) 證明: 函數(shù)在上是減函數(shù);
(Ⅱ)求證:是鈍角三角形;
(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年天津卷文)(12分)
已知函數(shù)其中為參數(shù),且
(I)當(dāng)時(shí),判斷函數(shù)是否有極值;
(II)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(III)若對(II)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市蕭山五校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)(其中常數(shù)a,b∈R)。 是奇函數(shù).
(Ⅰ)求的表達(dá)式;
(Ⅱ)求在區(qū)間[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市高三上學(xué)期九月診斷性考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本題滿分12分)
已知函數(shù)其中a>0,e為自然對數(shù)的底數(shù)。
(I)求
(II)求的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間[0,1]上的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com