【題目】已知),函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖像在點(diǎn)處的切線的斜率為1,問(wèn):在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?

【答案】1)答案不唯一,見(jiàn)解析 2

【解析】

1)利用平面向量數(shù)量積的坐標(biāo)表示公式求出函數(shù)的解析式,再對(duì)函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)性分類討論求出函數(shù)的單調(diào)區(qū)間;

2)根據(jù)函數(shù)的圖像在點(diǎn)處的切線的斜率為1,利用導(dǎo)數(shù)可以求出的值,對(duì)進(jìn)行求導(dǎo),由函數(shù)在區(qū)間上總存在極值,

問(wèn)題可以轉(zhuǎn)化為有兩個(gè)不等實(shí)根且至少有一個(gè)在區(qū)間內(nèi),根據(jù)二次方程根的分布進(jìn)行求解即可.

解:(1)由題意知定義域?yàn)?/span>,則

∴當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;

當(dāng)時(shí),函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.

2)由,,

∵函數(shù)在區(qū)間上總存在極值,

有兩個(gè)不等實(shí)根且至少有一個(gè)在區(qū)間內(nèi)

又∵函數(shù)是開(kāi)口向上的二次函數(shù),且,

上單調(diào)遞減,

所以;,由,解得;

綜上得:所以當(dāng)內(nèi)取值時(shí),對(duì)于任意,函數(shù),在區(qū)間上總存在極值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則稱函數(shù)是“雙奇函數(shù)”.函數(shù)

1)若函數(shù)是“雙奇函數(shù)”,求實(shí)數(shù)的值;

2)若時(shí),討論函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗病毒的制劑,現(xiàn)對(duì)株感染了病毒的該植株樣本進(jìn)行噴霧試驗(yàn)測(cè)試藥效.測(cè)試結(jié)果分植株死亡植株存活兩個(gè)結(jié)果進(jìn)行統(tǒng)計(jì);并對(duì)植株吸收制劑的量(單位:)進(jìn)行統(tǒng)計(jì)規(guī)定:植株吸收在(包括)以上為足量,否則為不足量”.現(xiàn)對(duì)該株植株樣本進(jìn)行統(tǒng)計(jì),其中植株存活株,對(duì)制劑吸收量統(tǒng)計(jì)得下表.已知植株存活制劑吸收不足量的植株共.

編號(hào)

吸收量

1)完成以下列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)的前提下,認(rèn)為植株的存活制劑吸收足量有關(guān)?

吸收足量

吸收不足量

合計(jì)

植株存活

植株死亡

合計(jì)

2)若在該樣本制劑吸收不足量的植株中隨機(jī)抽取株,求這株中恰有植株存活的概率.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)通過(guò)與安哥拉國(guó)家石油公司合作,獲得了安哥拉深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在某些區(qū)塊隨機(jī)初步勘探了部分舊井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位來(lái)進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)下表:

井位

1

2

3

4

5

6

坐標(biāo)

鉆探深度

2

4

5

6

8

10

出油量

40

70

110

90

160

205

1)若16號(hào)舊井位置滿足線性分布,借助前5組數(shù)據(jù)所求得的回歸直線方程為,且,求,并估計(jì)的預(yù)報(bào)值;

2)現(xiàn)準(zhǔn)備勘探新井71,25),若通過(guò),1,3,5,7號(hào)井計(jì)算出的的值與(1)中,的值的差不超過(guò)10%,則使用位置最接近的舊井,否則在新位置打井,請(qǐng)判斷可否使用舊井?(注:其中的計(jì)算結(jié)果用四舍五入法保留一位小數(shù))

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),解不等式;

(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲乙丙丁四個(gè)人相互之間傳球,從甲開(kāi)始傳球,甲等可能地把球傳給乙丙丁中的任何一個(gè)人,依此類推.

1)通過(guò)三次傳球后,球經(jīng)過(guò)乙的次數(shù)為ξ,求ξ的分布列和期望;

2)設(shè)經(jīng)過(guò)n次傳球后,球落在甲手上的概率為an,

i)求a1,a2,an

ii)探究:隨著傳球的次數(shù)足夠多,球落在甲乙丙丁每個(gè)人手上的概率是否相等,并簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且, ,則數(shù)列中的為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案