【題目】下列命題正確的是( )
A.若函數(shù)在上有零點(diǎn),則一定有
B.函數(shù)既不是奇函數(shù)也不是偶函數(shù)
C.若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是
D.若函數(shù)滿足條件,,則,
【答案】CD
【解析】
選項(xiàng)A,根據(jù)零點(diǎn)的存在性定理判斷本命題錯(cuò)誤;
選項(xiàng)B,求出函數(shù)的定義域,判斷它是偶函數(shù);
選項(xiàng)C,求出函數(shù)的值域?yàn)?/span>時(shí)的取值范圍即可;
選項(xiàng)D,函數(shù)滿足條件,,
則,進(jìn)而求出函數(shù)的解析式.
解:對(duì)于選項(xiàng)A,函數(shù)在上有零點(diǎn),不一定有,如函數(shù)不是連續(xù)函數(shù)或其他情況,選項(xiàng)A錯(cuò)誤;
對(duì)于選項(xiàng)B,函數(shù)的定義域?yàn)?/span>,
且,滿足,所以是偶函數(shù),選項(xiàng)B錯(cuò)誤;
對(duì)于選項(xiàng)C,函數(shù)的值域?yàn)?/span>時(shí),當(dāng)時(shí),滿足條件,
當(dāng)時(shí),有.
綜上,實(shí)數(shù)的取值范圍是,選項(xiàng)C正確;
對(duì)于選項(xiàng)D,函數(shù)滿足條件,,
則,解得,,選項(xiàng)D正確.
故選:CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紙上寫有1,2,…,n這n個(gè)正整數(shù),第1步劃去前面4個(gè)數(shù)1,2,3,4在n的后面寫上劃去的4個(gè)數(shù)的和10;第2步再劃去前面的4個(gè)數(shù)5,6,7,8在最后寫上劃去的4個(gè)數(shù)的和26:如此下去(即每步劃去前面4個(gè)數(shù),在最后面寫上劃去的4個(gè)數(shù)的和)
(1)若最后只剩下一個(gè)數(shù),則n應(yīng)滿足的充要條件是什么?
(2)取n=2002到最后只剩下一個(gè)數(shù)為止,所有寫出的數(shù)(包括原來的1,2…,2002)的總和是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“三個(gè)臭皮匠,賽過諸葛亮”,這是我們常說的口頭禪,主要是說集體智慧的強(qiáng)大. 假設(shè)李某智商較高,他獨(dú)自一人解決項(xiàng)目M的概率為;同時(shí),有個(gè)水平相同的人也在研究項(xiàng)目M,他們各自獨(dú)立地解決項(xiàng)目M的概率都是.現(xiàn)在李某單獨(dú)研究項(xiàng)目M,且這個(gè)人組成的團(tuán)隊(duì)也同時(shí)研究項(xiàng)目M,設(shè)這個(gè)人團(tuán)隊(duì)解決項(xiàng)目M的概率為,若,則的最小值是( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù).
(1)若,,求函數(shù)有零點(diǎn)的概率;
(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造商月生產(chǎn)了一批乒乓球,隨機(jī)抽樣個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下表
分組 | 頻數(shù) | 頻率 |
| 10 | |
20 | ||
50 | ||
20 | ||
合計(jì) | 100 |
(1)請(qǐng)?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間的中點(diǎn)值是)作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:x2+y2-6x-2y+7=0相切.
(1)求橢圓C的方程;
(2)若不過點(diǎn)A的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),且=0,求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的零點(diǎn).
(2)當(dāng),求函數(shù)在上的最大值;
(3)對(duì)于給定的正數(shù),有一個(gè)最大的正數(shù),使時(shí),都有,試求出這個(gè)正數(shù)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com