【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個橢圓,這兩個橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)x(噸),用水量不超過 x 的部分按平價收費,超出 x 的部分按議價收費.為了了解全市居民用水量的分布情況,通過抽樣,獲得了 100 位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 a 的值;
(Ⅱ)若該市政府希望使 85%的居民每月的用水量不超過標(biāo)準(zhǔn) x(噸),估計 x 的值,并說明理由;
(Ⅲ)已知平價收費標(biāo)準(zhǔn)為 4 元/噸,議價收費標(biāo)準(zhǔn)為 8元/噸.當(dāng) x=3時,估計該市居民的月平均水費.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則a2017= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,則下列結(jié)論正確的是( )
①f(x)的圖象關(guān)于直線 對稱
②f(x)的圖象關(guān)于點 對稱
③f(x)的圖象向左平移 個單位,得到一個偶函數(shù)的圖象
④f(x)的最小正周期為π,且在 上為增函數(shù).
A.③
B.①③
C.②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(1)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且2x0=m+n.問:函數(shù)F(x)在點(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1 , F2 , 且|F1F2|=2,點(1, )在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為 ,求以F2為圓心且與直線l相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E、F分別是棱AD、DD1的中點,若AB=4,則過點B,E,F(xiàn)的平面截該正方體所得的截面面積S等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 為菱形,四邊形 為平行四邊形,設(shè) 與 相交于點 , .
(1)證明:平面 平面 ;
(2)若 ,求三棱錐 的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com