【題目】已知函數(shù)f(x)=lnx+x2 .
(1)若函數(shù)g(x)=f(x)﹣ax在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)在(1)的條件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)﹣3x2﹣kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且2x0=m+n.問(wèn):函數(shù)F(x)在點(diǎn)(x0 , F(x0))處的切線能否平行于x軸?若能,求出該切線方程;若不能,請(qǐng)說(shuō)明理由.
【答案】
(1)解:g(x)=f(x)﹣ax=lnx+x2﹣ax,
由題意知,g′(x)≥0,對(duì)任意的x∈(0,+∞)恒成立,即
又∵x>0, ,當(dāng)且僅當(dāng) 時(shí)等號(hào)成立
∴ ,可得
(2)解:由(1)知, ,令t=ex,則t∈[1,2],則
h(t)=t3﹣3at,
由h′(t)=0,得 或 (舍去),
∵ ,∴
若 ,則h′(t)<0,h(t)單調(diào)遞減;若 ,則h′(t)>0,h(t)單調(diào)遞增
∴當(dāng) 時(shí),h(t)取得極小值,極小值為
(3)解:設(shè)F(x)在(x0,F(xiàn)(x0))的切線平行于x軸,其中F(x)=2lnx﹣x2﹣kx
結(jié)合題意,有
①﹣②得
所以 ,由④得
所以 ⑤
設(shè) ,⑤式變?yōu)?
設(shè) ,
所以函數(shù) 在(0,1)上單調(diào)遞增,
因此,y<y|u=1=0,即 ,也就是 此式與⑤矛盾
所以F(x)在(x0,F(xiàn)(x0))的切線不能平行于x軸
【解析】(1)先根據(jù)題意寫出:g(x)再求導(dǎo)數(shù),由題意知,g′(x)≥0,x∈(0,+∞)恒成立,即 由此即可求得實(shí)數(shù)a的取值范圍;(2)由(1)知 ,利用換元法令t=ex , 則t∈[1,2],則h(t)=t3﹣3at,接下來(lái)利用導(dǎo)數(shù)研究此函數(shù)的單調(diào)性,從而得出h(x)的極小值;(3)對(duì)于能否問(wèn)題,可先假設(shè)能,即設(shè)F(x)在(x0 , F(x0))的切線平行于x軸,其中F(x)=2lnx﹣x2﹣kx結(jié)合題意,列出方程組,證得函數(shù) 在(0,1)上單調(diào)遞增,最后出現(xiàn)矛盾,說(shuō)明假設(shè)不成立,即切線不能否平行于x軸.
【考點(diǎn)精析】本題主要考查了函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q﹣BP﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有1 000根某品種的棉花纖維,從中隨機(jī)抽取50根,纖維長(zhǎng)度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)見右上表,據(jù)此估計(jì)這1 000根中纖維長(zhǎng)度不小于37.5 mm的根數(shù)是 .
纖維長(zhǎng)度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的長(zhǎng)軸長(zhǎng)為2,拋物線E:x2=2y的準(zhǔn)線與橢圓C相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于A,B兩點(diǎn)且與拋物線E在第一象限相切于點(diǎn)P,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M,求 的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動(dòng)圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個(gè)橢圓,這兩個(gè)橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且 =2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 ⊥ ,| |= ,| |=t,若P點(diǎn)是△ABC所在平面內(nèi)一點(diǎn),且 = + ,當(dāng)t變化時(shí), 的最大值等于( )
A.﹣2
B.0
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲線c1:y=f(x)與曲線c2:y=g(x)存在公切線,求a最大值.
(Ⅱ)當(dāng)a=1時(shí),F(xiàn)(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于O、A、B三點(diǎn),O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,△AOB的面積為 ,則p=( )
A.1
B.
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com