【題目】已知橢圓,圓心為坐標(biāo)原點(diǎn)的單位圓OC的內(nèi)部,且與C有且僅有兩個(gè)公共點(diǎn),直線(xiàn)C只有一個(gè)公共點(diǎn).

1)求C的標(biāo)準(zhǔn)方程;

2)設(shè)不垂直于坐標(biāo)軸的動(dòng)直線(xiàn)l過(guò)橢圓C的左焦點(diǎn)F,直線(xiàn)lC交于A,B兩點(diǎn),且弦AB的中垂線(xiàn)交x軸于點(diǎn)P,求的值.

【答案】(1) (2)

【解析】

1)利用單位圓的性質(zhì)求得,利用直線(xiàn)和橢圓聯(lián)立方程后關(guān)于的方程只有一個(gè)解,判別式為列方程,由此求得.進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.

2)設(shè)出直線(xiàn)的方程,代入橢圓方程,寫(xiě)出韋達(dá)定理,求得中點(diǎn)的坐標(biāo),利用中垂線(xiàn)的斜率列方程,求得點(diǎn)的橫坐標(biāo),由此求得.利用弦長(zhǎng)公式求得,進(jìn)而求得的值.

1)依題意,得

代入橢圓的方程,得

,解得

所以橢圓的標(biāo)準(zhǔn)方程為

2)由(1)可得左焦點(diǎn)

由題意設(shè)直線(xiàn)的方程為,

代入橢圓方程,得

設(shè),則

所以,AB的中點(diǎn)為

設(shè)點(diǎn),則

解得

所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則nm的值不可以是下列四個(gè)選項(xiàng)中的哪組( )

A.n=360,m=14B.n=420,m=15C.n=540m=18D.n=660,m=19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了了解高三學(xué)生每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間,隨機(jī)抽取了高三男生和女生各50名進(jìn)行問(wèn)卷調(diào)查,其中每天自主學(xué)習(xí)中國(guó)古典文學(xué)的時(shí)間超過(guò)3小時(shí)的學(xué)生稱(chēng)為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:

古文迷

非古文迷

合計(jì)

男生

26

24

50

女生

30

20

50

合計(jì)

56

44

100

(Ⅰ)根據(jù)表中數(shù)據(jù)能否判斷有的把握認(rèn)為“古文迷”與性別有關(guān)?

(Ⅱ)現(xiàn)從調(diào)查的女生中按分層抽樣的方法抽出5人進(jìn)行調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);

(Ⅲ)現(xiàn)從(Ⅱ)中所抽取的5人中再隨機(jī)抽取3人進(jìn)行調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

參考公式: ,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.321

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)的各景點(diǎn)從2009年取消門(mén)票實(shí)行免費(fèi)開(kāi)放后,旅游的人數(shù)不斷地增加,不僅帶動(dòng)了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向觀(guān)光、休閑、會(huì)展三輪驅(qū)動(dòng)的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬(wàn)人)與年份的數(shù)據(jù):

1

2

3

4

5

6

7

8

9

10

旅游人數(shù)(萬(wàn)人)

300

283

321

345

372

435

486

527

622

800

該景點(diǎn)為了預(yù)測(cè)2021年的旅游人數(shù),建立了的兩個(gè)回歸模型:

模型①:由最小二乘法公式求得的線(xiàn)性回歸方程;

模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線(xiàn)的附近.

1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個(gè)位,精確到001).

2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)2021年該景區(qū)的旅游人數(shù)(單位:萬(wàn)人,精確到個(gè)位).

回歸方程

30407

14607

參考公式、參考數(shù)據(jù)及說(shuō)明:

①對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘法估計(jì)分別為.②刻畫(huà)回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)若函數(shù)有唯一零點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

2)若曲線(xiàn)上的點(diǎn)到直線(xiàn)l的最大距離為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校教務(wù)處對(duì)學(xué)生學(xué)習(xí)的情況進(jìn)行調(diào)研,其中一項(xiàng)是:對(duì)學(xué)習(xí)數(shù)學(xué)的態(tài)度是否與性別有關(guān),可見(jiàn)隨機(jī)抽取了30名學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到了如下聯(lián)表:

男生

女生

合計(jì)

喜歡

10

不喜歡

8

合計(jì)

30

已知在這30人中隨機(jī)抽取1人,抽到喜歡學(xué)習(xí)數(shù)學(xué)的學(xué)生的概率是.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程);

(2)若從喜歡學(xué)習(xí)數(shù)學(xué)的女生中抽取2人進(jìn)行調(diào)研,其中女生甲被抽到的概率為多少?(要寫(xiě)求解過(guò)程)

(3)試判斷是否有95%的把握認(rèn)為喜歡學(xué)習(xí)數(shù)學(xué)與性別有關(guān)?

附:,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再?gòu)倪@10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.

(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;

(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國(guó)通過(guò)植樹(shù)造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹(shù)木的高度(單位:米)與生長(zhǎng)年限(單位:年,tN*)滿(mǎn)足如下的邏輯斯蒂函數(shù):,其中e為自然對(duì)數(shù)的底數(shù). 設(shè)該樹(shù)栽下的時(shí)刻為0.

(1)需要經(jīng)過(guò)多少年,該樹(shù)的高度才能超過(guò)5米?(精確到個(gè)位)

(2)在第幾年內(nèi),該樹(shù)長(zhǎng)高最快?

查看答案和解析>>

同步練習(xí)冊(cè)答案