【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如右圖所示的正方形ABCD(邊長(zhǎng)為3個(gè)單位)的頂點(diǎn)A處,然后通過(guò)擲骰子來(lái)確定棋子沿正方形的邊按逆時(shí)針?lè)较蛐凶叩膯挝?/span>,如果擲出的點(diǎn)數(shù)為(=1,2,,6),則棋子就按逆時(shí)針?lè)较蛐凶?/span>個(gè)單位,一直循環(huán)下去.某人拋擲三次骰子后,棋子恰好又回到點(diǎn)A處的所有不同走法共有
A.22種B.24種C.25種D.36種
【答案】C
【解析】
試題設(shè)拋擲三次的點(diǎn)數(shù)分別為,則當(dāng)時(shí),,符合條件的數(shù)對(duì)可以是,共2對(duì);當(dāng)時(shí),,符合條件的數(shù)對(duì)可以是,共3對(duì);依次類(lèi)推,當(dāng)時(shí),,符合條件的數(shù)對(duì)有4對(duì);當(dāng)時(shí),,符合條件的數(shù)對(duì)有5對(duì);當(dāng)時(shí),,符合條件的數(shù)對(duì)有6對(duì);當(dāng)時(shí),,符合條件的數(shù)對(duì)有5對(duì); 所以不同走法共有2+3+4+5+6+5=25種,故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),點(diǎn).
(1)求拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)若拋物線(xiàn)與軸的交點(diǎn)為,連接,并延長(zhǎng)交拋物線(xiàn)于點(diǎn),求證:;
(3)將拋物線(xiàn)作適當(dāng)?shù)钠揭疲脪佄锞(xiàn),若時(shí),恒成立,求得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家通過(guò)市場(chǎng)調(diào)研,發(fā)現(xiàn)某商品的銷(xiāo)售價(jià)格y(元/件)和銷(xiāo)售量x(件)有關(guān),其關(guān)系可用圖中的折線(xiàn)段表示(不包含端點(diǎn)A).
(1)把y表示成x的函數(shù);
(2)若該商品進(jìn)貨價(jià)格為12元/件,則商家賣(mài)出多少件時(shí)可以獲得最大利潤(rùn)?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為 (為參數(shù)).
(I)寫(xiě)出直線(xiàn)的一般方程與曲線(xiàn)的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,向上平移個(gè)單位長(zhǎng)度,得到曲線(xiàn),設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)曲線(xiàn)上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù),求函數(shù)的極值;
(2)討論函數(shù)在定義域內(nèi)極值點(diǎn)的個(gè)數(shù);
(3)設(shè)直線(xiàn)為函數(shù)的圖象上一點(diǎn)處的切線(xiàn),證明:在區(qū)間上存在唯一的,使得直線(xiàn)與曲線(xiàn)相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)求曲線(xiàn)的普通方程與直線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)已知直線(xiàn)與曲線(xiàn)交于, 兩點(diǎn),與軸交于點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖如下.
組號(hào) | 分組 | 頻數(shù) |
1 | [0,2) | 6 |
2 | [2,4) | 8 |
3 | [4,6) | 17 |
4 | [6,8) | 22 |
5 | [8,10) | 25 |
6 | [10,12) | 12 |
7 | [12,14) | 6 |
8 | [14,16) | 2 |
9 | [16,18) | 2 |
合計(jì) | 100 |
(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的頻率;
(2)求頻率分布直方圖中的a,b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com