【題目】已知拋物線,點.

1)求拋物線的頂點坐標;

2)若拋物線軸的交點為,連接,并延長交拋物線于點,求證:;

3)將拋物線作適當?shù)钠揭疲脪佄锞,若時,恒成立,求得最大值.

【答案】1;(2)見解析;(38.

【解析】

1)配方后可得頂點坐標;

2)求出點坐標,得到直線的方程,與拋物線方程聯(lián)立可解得點坐標,求出后可證結(jié)論成立;

3)令,求得其與的一個交點的坐標,進而求得解析式,再求得另一交點坐標即可得.

1,∴其頂點坐標為

2)在中令,所以,此時直線方程為

,解得,所以,

,

所以;

3)如圖所示,設,設其與拋物線交點的橫坐標為,且,根據(jù)題意要使最大,也盡可能的大,因此,則,將代入拋物線方程得,解得,(舍去),∴,令,解得,故的最大值是8.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”是一個類似計步數(shù)據(jù)庫的公眾賬號,現(xiàn)從“微信運動”的個好友(男、女各人)中,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:

0-2000

2001-5000

5001-8000

8001-10000

>10000

男(人數(shù))

2

4

6

10

8

女(人數(shù))

1

7

10

9

3

1)若某人一天的走路步數(shù)超過步被系統(tǒng)評定為“積極型”,否則評定為“懈怠型",根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有%的把握認為“評定類型"與“性別“有關?

積極型

懈怠型

總計

男(人數(shù))

女(人數(shù))

總計

2)現(xiàn)從被系統(tǒng)評定為“積極型”好友中,按男女性別分層抽樣,共抽出人,再從這人中,任意抽出人發(fā)一等獎,求發(fā)到一等獎的中恰有一名女性的概率.

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,圓,以動點為圓心的圓經(jīng)過點,且圓與圓內(nèi)切.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)若直線過點,且與曲線交于兩點,則在軸上是否存在一點,使得軸平分?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面. 

(1)證明:平面平面;

(2)若為棱的中點,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人設計一項單人游戲,規(guī)則如下:先將一棋子放在如右圖所示的正方形ABCD(邊長為3個單位)的頂點A,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點數(shù)為(=1,2,,6),則棋子就按逆時針方向行走個單位,一直循環(huán)下去.某人拋擲三次骰子后,棋子恰好又回到點A處的所有不同走法共有

A.22B.24C.25D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若有相同的單調(diào)區(qū)間,求的取值范圍;

(Ⅱ)令),若在定義域內(nèi)有兩個不同的極值點.

(i)求的取值范圍;

(ii)設兩個極值點分別為 ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

同步練習冊答案