【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)求曲線與交點的極坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,點為線段的中點,點為線段上靠近的三等分點.現(xiàn)沿進(jìn)行翻折,得到四棱錐,如圖2,且.在圖2中:
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始,高考采用取消文理分科,實行“”的模式,其中的“1”表示每位學(xué)生必須從物理、歷史中選擇一個科目且只能選擇一個科目.某校高一年級有2000名學(xué)生(其中女生900人).該校為了解高一年級學(xué)生對“1”的選課情況,采用分層抽樣的方法抽取了200名學(xué)生進(jìn)行問卷調(diào)查,下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表.
性別 | 選擇物理 | 選擇歷史 | 總計 |
男生 | ________ | 50 | |
女生 | 30 | ________ | |
總計 | ________ | ________ | 200 |
(1)求,的值;
(2)請你依據(jù)該列聯(lián)表判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001/span> | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢市掀起了轟轟烈烈的“十日大會戰(zhàn)”,要在10天之內(nèi),對武漢市民做一次全員檢測,徹底摸清武漢市的詳細(xì)情況.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗方式:
方案①:將每個人的血分別化驗,這時需要驗1000次.
方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗這樣,該組個人的血總共需要化驗次. 假設(shè)此次檢驗中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.
(1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè). 試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以減少多少次?(最后結(jié)果四舍五入保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)求證:曲線在區(qū)間上有且只有一條斜率為2的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(在花卉進(jìn)行硬枝扦插過程中,常需要用生根粉調(diào)節(jié)植物根系生長.現(xiàn)有20株使用了生根粉的花卉,在對最終“花卉存活”和“花卉死亡”進(jìn)行統(tǒng)計的同時,也對在使用生根粉2個小時后的生根量進(jìn)行了統(tǒng)計,這20株花卉生根量如下表所示,其中生根量在6根以下的視為“不足量”,大于等于6根為“足量”.現(xiàn)對該20株花卉樣本進(jìn)行統(tǒng)計,其中“花卉存活”的13株.已知“花卉存活”但生根量“不足量”的植株共1株.
編號 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
生根量 | 6 | 8 | 3 | 8 | 9 | 5 | 6 | 6 | 2 | 7 | 7 | 5 | 9 | 6 | 7 | 8 | 8 | 4 | 6 | 9 |
(1)完成列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認(rèn)為“花卉的存活”與“生根足量”有關(guān)?
生根足量 | 生根不足量 | 總計 | |
花卉存活 | |||
花卉死亡 | |||
總計 | 20 |
(2)若在該樣本“生根不足量”的植株中隨機(jī)抽取3株,求這3株中恰有1株“花卉存活”的概率.
參考數(shù)據(jù):
獨立性檢驗中的,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點作互相垂直的兩條直線分別交橢圓于點(與不重合).
(1)證明:直線過定點;
(2)若以點為圓心的圓與直線相切,且切點為線段的中點,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“扶貧幫困”是中華民族的傳統(tǒng)美德,某大型企業(yè)為幫扶貧困職工,設(shè)立“扶貧幫困基金”,采用如下方式進(jìn)行一次募捐:在不透明的箱子中放入大小均相同的白球六個,紅球三個,每位獻(xiàn)愛心的參與者投幣100元有一次摸獎機(jī)會,一次性從箱中摸球三個(摸完球后將球放回),若有一個紅球,獎金20元,兩個紅球獎金40元,三個全為紅球獎金200元.
(1)求一位獻(xiàn)愛心參與者不能獲獎的概率;
(2)若該次募捐有300位獻(xiàn)愛心參與者,求此次募捐所得善款的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com