12.等差數(shù)列{an}中,a2+a8-a12=0,a14-a4=2,記sn=a1+a2+…+an,則s15的值為( 。
A.30B.56C.68D.78

分析 利用等差數(shù)列通項公式列出方程組,求出首項和公差,由此能求出s15的值.

解答 解:∵等差數(shù)列{an}中,a2+a8-a12=0,a14-a4=2,
∴$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+7d-({a}_{1}+11d)=0}\\{{a}_{1}+13d-({a}_{1}+3d)=2}\end{array}\right.$,
解得${a}_{1}=\frac{3}{5},d=\frac{1}{5}$,
∵sn=a1+a2+…+an
∴s15=15a1+$\frac{15×14}{2}d$=30.
故選:A.

點評 本題考查等差數(shù)列的前15項和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ln(x+1)+ax2,a>0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(-1,0)有唯一零點x0,證明:${e^{-2}}<{x_0}+1<{e^{-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在三棱錐A-BCD中,E、F分別是AB,CD的中點,若AD=BC=2,AD與BC所成的角為θ,EF=$\sqrt{3}$,則sinθ=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x+1)•{e}^{x},x≤a}\\{bx-1,x>a}\end{array}\right.$,若函數(shù)f(x)有最大值M,則M的取值范圍是( 。
A.($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0)B.(0,$\frac{1}{{e}^{2}}$]C.(0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$]D.($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.$(x-\frac{1}{x}){(2x-1)^6}$的展開式中,x3的系數(shù)是-180.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-$\frac{a}{x}$,g(x)=$\frac{1}{2}{(x-1)^2}$-1.
(Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為$\frac{3}{2}$,求a的值;
(Ⅲ)當(dāng)a=0時,若x≥1時,恒有x•f(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓錐曲線C:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù))和定點$A(0,\frac{{\sqrt{3}}}{3})$,且F1,F(xiàn)2分別為圓錐曲線C的左右焦點.
(Ⅰ)求過點F2且垂直于直線AF1的直線l的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,直線l與曲線C相交于M,N兩點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a=(1,-2)$,向量$\overrightarrow b=(3,x)$,若$\overrightarrow a⊥\overrightarrow b$,則實數(shù)x的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若△OAB是以O(shè)為直角頂點的三角形,且面積為$\frac{\sqrt{6}}{2}$,設(shè)向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=2$\overrightarrow{a}$+3$\overrightarrow$,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值為13-2$\sqrt{6\sqrt{6}}$.

查看答案和解析>>

同步練習(xí)冊答案