1.在復(fù)平面內(nèi),復(fù)數(shù)(-4+5i)i(i為虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡復(fù)數(shù)(-4+5i)i,求出它的共軛復(fù)數(shù),再進(jìn)一步求出在復(fù)平面內(nèi),復(fù)數(shù)(-4+5i)i的共軛復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:∵(-4+5i)i=-5-4i,
∴復(fù)數(shù)(-4+5i)i的共軛復(fù)數(shù)為:-5+4i,
∴在復(fù)平面內(nèi),復(fù)數(shù)(-4+5i)i的共軛復(fù)數(shù)對應(yīng)的點(diǎn)的坐標(biāo)為:(-5,4),位于第二象限.
故選:B.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=(2x+a)n,其中$n=6\int_0^{\frac{π}{2}}{cosxdx,\frac{f'(0)}{f(0)}}=-12$,則f(x)的展開式中x4的系數(shù)為240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}的首項(xiàng)為23,公差為-2,則數(shù)列前n項(xiàng)和的最大值為144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列四組函數(shù)中,相等的兩個(gè)函數(shù)是(  )
A.f(x)=x,$g(x)=\frac{x^2}{x}$B.$f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$
C.$f(x)={(\sqrt{x})^2}$,g(x)=xD.$f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)=sinx(cosx+1),則f′($\frac{π}{4}$)$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,sinA,sinB,sinC依次成等比數(shù)列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=24,則△ABC的面積是4$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R).
(I)若函數(shù)在(1,f(1))處的切線過(0,1)點(diǎn),求k的值;
(II)當(dāng)k∈($\frac{1}{2}$,1]時(shí),試問,函數(shù)f(x)在[0,k]是否存在極大值或極小值,說明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四邊形ABCD是平行四邊形,AE⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點(diǎn).
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求多面體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x+1)=2f(x),則f(x)的解析式可以是( 。
A.f(x)=2xB.f(x)=2xC.f(x)=x+2D.f(x)=log2x

查看答案和解析>>

同步練習(xí)冊答案