【題目】一種排卡游戲規(guī)則如下:將寫有的九張卡片隨機地排成一行,第一張卡片:左起)上的標數(shù)為,則將前張卡片逆序排過來稱為一次操作,無法操作時(即第一張卡片上的標數(shù)“1”)游戲停止.若一個排列無法操作,且恰由唯一的另一個排列經(jīng)過一次操作得到,則此排列稱為二次終止排列”.在所有可能的排列中,求二次終止排列出現(xiàn)的概率.

【答案】

【解析】

顯然,對于一個二次終止排列,其第一位排的卡片必為1,設(shè)第個位置上的卡片標數(shù)為,則的一個排列,則.

由于中存在唯一的一個排列經(jīng)過一次操作得到,則在中恰有一個滿足,而這個可以有八種不同的選擇,另外七個數(shù)均有(否則,若存在,,考慮將前張卡片逆序排過來得到的排列將與張卡片逆序排過來得到的排列,由于排列1分別在號位置上,它們不可能相同,但它們經(jīng)過一次操作后均得到同一個二次終止排列,矛盾).從而,對應(yīng)為七個位置的錯位排列個數(shù)應(yīng)為.

又所求的二次終止排列的個數(shù)為,

因此,它出現(xiàn)的概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點為圓上的動點,點軸上的投影為,點為線段AB的中點,設(shè)點的軌跡為

1)求點的軌跡的方程;

2)已知直線交于兩點,,若直線的斜率之和為3,直線是否恒過定點?若是,求出定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設(shè),記數(shù)列的前項和為

①求;

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成, , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

(1)求分數(shù)內(nèi)的頻率,并補全這個頻率分布直方圖;

(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);

(3)若從第1組和第6組兩組學生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,GEF的中點,現(xiàn)在沿AE、AFEF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左頂點到直線的距離,為坐標原點.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓相交于兩點,若以為直徑的圓經(jīng)過坐標原點,證明:到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓)的上頂點為,圓經(jīng)過點

(1)求橢圓的方程;

(2)過點作直線交橢圓兩點,過點作直線的垂線交圓于另一點.若△PQN的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是偶函數(shù),求的值;

2)設(shè)函數(shù),當時,有且只有一個實數(shù)根,求的取值范圍;

3)若關(guān)于的方程在區(qū)間上有兩個不相等的實數(shù)根,證明:.

查看答案和解析>>

同步練習冊答案