分析 (Ⅰ)求出數(shù)列{an}的通項(xiàng)公式,再求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)求出數(shù)列{cn}的通項(xiàng),利用錯(cuò)位相減法求數(shù)列{cn}的前n項(xiàng)和Tn.
解答 解:(Ⅰ)Sn=3n2+8n,
∴n≥2時(shí),an=Sn-Sn-1=6n+5,
n=1時(shí),a1=S1=11,∴an=6n+5;
∵an=bn+bn+1,
∴an-1=bn-1+bn,
∴an-an-1=bn+1-bn-1.
∴2d=6,
∴d=3,
∵a1=b1+b2,
∴11=2b1+3,
∴b1=4,
∴bn=4+3(n-1)=3n+1;
(Ⅱ)cn=$\frac{({a}_{n}+1)^{n+1}}{(_{n}+2)^{n}}$=$\frac{(6n+6)^{n+1}}{(3n+3)^{n}}$=$\frac{(6n+6)^{n}(6n+6)}{(3n+3)^{n}}$=$\frac{{6}^{n}(n+1)^{n}(6n+6)}{{3}^{n}(n+1)^{n}}$=$\frac{{6}^{n}(6n+6)}{{3}^{n}}$=$\frac{(2×3)^{n}(6n+6)}{{3}^{n}}$=$\frac{(2×3)^{n}(6n+6)}{{3}^{n}}$=6(n+1)•2n,
∴Tn=6[2•2+3•22+…+(n+1)•2n]①,
∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,
①-②可得
-Tn=6[2•2+22+23+…+2n-(n+1)•2n+1]
=12+6×$\frac{2(1-{2}^{n})}{1-2}$-6(n+1)•2n+1
=(-6n)•2n+1=-3n•2n+2,
∴Tn=3n•2n+2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)與求和,著重考查等差數(shù)列的通項(xiàng)與錯(cuò)位相減法的運(yùn)用,考查分析與運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{10}$ | B. | $\frac{5}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2sin(2x+$\frac{π}{4}$) | B. | y=2sin(2x+$\frac{π}{3}$) | C. | y=2sin(2x-$\frac{π}{4}$) | D. | y=2sin(2x-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$+$\frac{2}{3}$π | B. | $\frac{1}{3}$+$\frac{\sqrt{2}}{3}$π | C. | $\frac{1}{3}$+$\frac{\sqrt{2}}{6}$π | D. | 1+$\frac{\sqrt{2}}{6}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com