10.若命題“?x∈R,|x+1|+|x-a|<4”是真命題,則實數(shù)a的取值范圍是(-5,3).

分析 命題“?x∈R,|x+1|+|x-a|<4”是真命題?|x+1|+|x-a|<4由解?(|x+1|+|x-a|)min<4?|1+a|<4解得實數(shù)a的取值范圍.

解答 解:命題“?x∈R,|x+1|+|x-a|<4”是真命題
?|x+1|+|x-a|<4有解?(|x+1|+|x-a|)min<4?|1+a|<4,
解得-5<a<3,∴實數(shù)a的取值范圍  (-5,3)
故答案為:(-5,3)

點評 本題考查了命題真假的應(yīng)用,等價轉(zhuǎn)換是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某公司有4家直營店a,b,c,d,現(xiàn)需將6箱貨物運送至直營店進行銷售,各直營店出售該貨物以往所得利潤統(tǒng)計如下表所示.
abcd
00000
14224
26455
37766
48888
59988
6101088
根據(jù)此表,該公司獲得最大總利潤的運送方式有( 。
A.1種B.2種C.3種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.復(fù)數(shù)$z=\frac{1}{1+i}$的模長為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知m>0,設(shè)函數(shù)f(x)=emx-lnx-2.
(1)若m=1,證明:存在唯一實數(shù)$t∈(\frac{1}{2},1)$,使得f′(t)=0;
(2)若當(dāng)x>0時,f(x)>0,證明:$m>{e^{-\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了了解某校高三400名學(xué)生的數(shù)學(xué)學(xué)業(yè)水平測試成績,制成樣本頻率分布直方圖如圖,分數(shù)不低于a即為優(yōu)秀,如果優(yōu)秀的人數(shù)為82人,則a的估計值是(  )
A.130B.140C.133D.137

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex+ax2-bx-1(a,b∈R,e為自然對數(shù)的底數(shù)).
(I)設(shè)f(x)的導(dǎo)函數(shù)為g(x),求g(x)在區(qū)間[0,l]上的最小值;
(II)若f(1)=0,且函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點,證明:-1<a<2-e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)為R上的偶函數(shù),當(dāng)x≥0時,f(x)=x3-4x,若函數(shù)g(x)=f(x)-a(x-2)有4個零點,則實數(shù)a的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.文藝演出中要求語言類節(jié)目不能相鄰,現(xiàn)有4個歌舞類節(jié)目和2個語言類節(jié)目,若從中任意選出4個排成節(jié)目單,則能排出不同節(jié)目單的數(shù)量最多是( 。
A.72B.120C.144D.288

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=|{\frac{2}{3}x+1}|$.
(1)若f(x)≥-|x|+a恒成立,求實數(shù)a的取值范圍;
(2)若對于實數(shù)x,y,有|x+y+1|≤$\frac{1}{3}$,|y-$\frac{1}{3}}$|≤$\frac{2}{3}$,求證:f(x)≤$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊答案