分析 (Ⅰ)利用等差數(shù)列通項公式列出方程組,求出首項和公差,由此能求出數(shù)列{an}的通項an及前n項和為Sn.
(Ⅱ)${S}_{n}={n}^{2}$,由${k}^{2}>{k}^{2}-\frac{1}{4}(k∈{N}^{*})$,得$\frac{1}{{k}^{2}}<\frac{1}{{k}^{2}-\frac{1}{4}}$,k∈N*,從而$\frac{1}{{k}^{2}}$<$\frac{4}{4{k}^{2}-1}=2(\frac{1}{2k-1}-\frac{1}{2k+1})$,由此利用裂項求和法能證明$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,
∵等差數(shù)列{an}滿足a2=3,a4+a7=20,∴依題意,得:$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{2{a}_{1}+9d=20}\end{array}\right.$,
解得a1=1,d=2,
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
∴${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$=n+n(n-1)=n2.
證明:(Ⅱ)∵${S}_{n}={n}^{2}$,
∴$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$=$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}$.
∵${k}^{2}>{k}^{2}-\frac{1}{4}(k∈{N}^{*})$,
∴$\frac{1}{{k}^{2}}<\frac{1}{{k}^{2}-\frac{1}{4}}$,k∈N*,
∴$\frac{1}{{k}^{2}}$<$\frac{4}{4{k}^{2}-1}=2(\frac{1}{2k-1}-\frac{1}{2k+1})$,
∴$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$=$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}$
<1+2($\frac{1}{3}-\frac{1}{5}$)+2($\frac{1}{5}-\frac{1}{7}$)+…+2($\frac{1}{2k-1}-\frac{1}{2k+1}$)
=1+2($\frac{1}{3}-\frac{1}{2k-1}$)=$\frac{5}{3}-\frac{2}{2k+1}$<$\frac{5}{3}$,
∴$\sum_{k=1}^{n}$$\frac{1}{{S}_{K}}$<$\frac{5}{3}$.
點評 本題考查等差數(shù)列的通項公式及前n項和的求法,考查數(shù)列不等式的證明,涉及到裂項求和法、放縮法等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,考查創(chuàng)新意識、應(yīng)用意識,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)+x<m+n | B. | f(x)+x>m+n | C. | f(x)-x<0 | D. | f(x)-x>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | -4 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 10 | C. | 12 | D. | 24 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com