解:(Ⅰ)由題得,設所求橢圓方程為
;
則有
所以橢圓方程為
.
(Ⅱ)設P(x
0,y
0)(y
0≠0),
,
,則
,即
,
則
,
,
即
,
∴k
1•k
2為定值
.
(Ⅲ)設M(x,y),其中
.
由已知
及點P在橢圓C上可得
,
整理得(3λ
2-1)x
2+3λ
2y
2=6,其中
.
①當
時,化簡得y
2=6,
所以點M的軌跡方程為
,軌跡是兩條平行于x軸的線段;
②當
時,方程變形為
,其中
.
當
時,M的軌跡為中心在原點、實軸在y軸上的雙曲線滿足
的部分;
當
時,點M的軌跡為中心在原點、長軸在x軸上的橢圓滿足
的部分;
當λ≥1時,點M的軌跡為中心在原點、長軸在x軸上的橢圓.
分析:(Ⅰ)設橢圓方程為
,半焦距為c,由題意能夠導出a,b,c,寫出橢圓方程即可;
(Ⅱ)設P(x
0,y
0)(y
0≠0),分別求出k
1,k
2的表達式,再求得k
1•k
2為定值即可;
(Ⅲ)設M(x,y),先由已知
及點P在橢圓C上可得(3λ
2-1)x
2+3λ
2y
2=6,下面對λ的值進行分類討論:①當
時,②當
時,其中再分成三類:一類是:當
時,另一類是:當
時,最后一類是:當λ≥1時,分別說明軌跡是什么曲線即得.
點評:本小題主要考查橢圓的標準方程、直線與圓錐曲線的位置關系等基礎知識,考查運算求解能力,考查方程思想、化歸與轉化思想.屬于中檔題.