2.在直二面角α-MN-β中,等腰直角三角形ABC的斜邊BC?α,一直角邊AC?β,BC與β所成角的正弦值為$\frac{\sqrt{6}}{4}$,則AB與β所成的角是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 過B作BO⊥MN于O,則BO⊥β,連接AO,則∠BCO為BC與β所成角,∠BAO為AB與β所成的角,由此能求出AB與β所成的角.

解答 解:過B作BO⊥MN于O,
則BO⊥β,連接AO,
則∠BCO為BC與β所成角,
設AB=AC=1,則BC=$\sqrt{2}$,
又sin∠BCO=$\frac{BO}{BC}$=$\frac{\sqrt{6}}{4}$,
∴BO=$\frac{\sqrt{3}}{2}$,而∠BAO為AB與β所成的角,
∵sin∠BAO=$\frac{BO}{AO}=\frac{\frac{\sqrt{3}}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
∴∠BAO=$\frac{π}{3}$,
∴AB與β所成的角是 $\frac{π}{3}$.
故選:C.

點評 本題考查直線與平面所成角的大小的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若f(x)=cos(2x+$\frac{π}{3}$),則f'($\frac{π}{12}$)的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知公差為正數(shù)的等差數(shù)列{an}的前n項和為Sn,且a2•a8=115,S9=126,數(shù)列{bn}的前n項和${T_n}={2^{n+1}}-2(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)求數(shù)列{an•bn}的前n項和為Mn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知等比數(shù)列{bn}的公比為$\frac{1}{2}$,數(shù)列{an}滿足a1=1,a2=3,an+1-an=2n•bn
(1)求{an}和{bn}的通項公式;
(2)求$\{\frac{a_n}{b_n}\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.有以下三個問題:
①擲一枚骰子一次,事件M:“出現(xiàn)的點數(shù)為奇數(shù)”,事件N:“出現(xiàn)的點數(shù)為偶數(shù)”;
②袋中有3白、2黑,5個大小相同的小球,依次不放回地摸兩球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;
③分別拋擲2枚相同的硬幣,事件M:“第1枚為正面”,事件N:“兩枚結(jié)果相同”.這三個問題中,M,N是相互獨立事件的有( 。
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項和為Sn,點$(n,{S_n})(n∈{N^*})$均在函數(shù)y=f(x) 的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在三棱錐A-BCD中AB=AC=1,DB=DC=2,AD=BC=$\sqrt{3}$,則三棱錐A-BCD的外接球的表面積為(  )
A.πB.$\frac{7π}{4}$C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.正項數(shù)列{an}中,a1=1,奇數(shù)項a1,a3,a5,…,a2k-1,…構(gòu)成公差為d的等差數(shù)列,偶數(shù)項a2,a4,a6,…,a2k,…構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(1)求a2和d;
(2)求數(shù)列{an}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.直線l在雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1上截得的弦長為4,且l的斜率為2,求直線l的方程.

查看答案和解析>>

同步練習冊答案