18.x,y滿足約束條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y-4≤0}\\{2x-y+4≥0}\end{array}\right.$,若z=ax-y取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值$\frac{1}{2}$ .

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,得到直線y=ax-z斜率的變化,從而求出a的取值.

解答 解:作出約束條件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y-4≤0}\\{2x-y+4≥0}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=ax-y得y=ax-z,即直線的截距最小,z最大.
若a=0,此時(shí)y=-z,此時(shí),目標(biāo)函數(shù)只在B處取得最大值,不滿足條件,
若a>0,目標(biāo)函數(shù)y=ax-z的斜率k=a>0,要使z=ax-y取得最大值的最優(yōu)解AB唯一,滿足題意
即:直線y=ax-z與直線x-2y-4=0平行,此時(shí)a=$\frac{1}{2}$,
若a<0,目標(biāo)函數(shù)y=ax-z與AC平行,要使z=ax-y取得最大值的最優(yōu)解B唯一,不滿足題意.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.注意要對(duì)a進(jìn)行分類討論,同時(shí)需要弄清楚最優(yōu)解的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.有三種卡片分別寫(xiě)有數(shù)字1,10,100,從上述三種卡片中選取若干張,使得這些卡片之和為m(m為正整數(shù)).考慮不同的選法種數(shù),例如m=11時(shí)有兩種選法:“一張卡片寫(xiě)有1,另一張寫(xiě)有10”或“11張寫(xiě)有1的卡片”.
(1)若m=100,直接寫(xiě)出選法種數(shù);
(2)設(shè)n為正整數(shù),記所選卡片的數(shù)字和為100n的選法種數(shù)為an,當(dāng)n≥2時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知等邊△ABC的邊長(zhǎng)為2,圓A的半徑為1,PQ為圓A的任意一條直徑.
(1)判斷$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否會(huì)隨點(diǎn)P的變化而變化,請(qǐng)說(shuō)明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,若${a^2}-{b^2}=\sqrt{3}bc$,sinC=$2\sqrt{3}sinB$,則A等于( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.?dāng)?shù)列{an}為非常數(shù)列,滿足:a3+a9=$\frac{1}{4}$,a5=$\frac{1}{8}$,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{50}}$的值為( 。
A.1475B.1425C.1325D.1275

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若實(shí)數(shù)x,y,滿足3x-4y-5=0,則$\sqrt{{x^2}+{y^2}}$的最小值是( 。
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a,b∈R,i2=-1,則“a=b=1”是“$\frac{2+2i}{1-i}={(a+bi)^2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求滿足下列條件的解析式
(1)已知f($\frac{2}{x}+1$)=lgx,求f(x);
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給定兩個(gè)長(zhǎng)度為1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它們的夾角為90°.點(diǎn)C在以O(shè)為圓心的圓弧$\widehat{AB}$上變動(dòng),若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則xy的范圍是( 。
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案