9.函數(shù)f(x)=x3+ax-2在區(qū)間[1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[3,+∞)B.(-3,+∞)C.[-3,+∞)D.(-∞,3]

分析 首先求得函數(shù)的導(dǎo)函數(shù),然后將原問(wèn)題轉(zhuǎn)化為恒成立的問(wèn)題,最后利用二次函數(shù)的性質(zhì)整理計(jì)算即可求得最終結(jié)果.

解答 解:對(duì)函數(shù)求導(dǎo)可得:f'(x)=3x2+a,滿足題意時(shí),3x2+a≥0在區(qū)間[1,+∞)上恒成立,
即a≥(-3x2max,結(jié)合二次函數(shù)的性質(zhì)可知,
當(dāng)x=1時(shí),二次函數(shù)y=-3x2在區(qū)間[1,+∞)上的最大值為-3,
綜上可得:實(shí)數(shù)a的取值范圍是[-3,+∞).
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),恒成立問(wèn)題等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(a,-b),$\overrightarrow{n}$=(sinB,$\sqrt{3}$cosA)垂直,
(1)求角A;
(2)若a=7,c=8,則b邊是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則m=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上,且∠F1PF2=60°,則|PF1||PF2|的值為( 。
A.36B.16$\sqrt{3}$C.16D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線xsinα+y+2=0的傾斜角的取值范圍是( 。
A.$[{\frac{π}{6},\frac{π}{4}}]$B.$[{0,\frac{π}{4}}]∪[{\frac{π}{2},π}]$C.$[{\frac{π}{4},\frac{3π}{4}}]$D.$[{0,\frac{π}{4}}]∪[{\frac{3π}{4},π})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在各項(xiàng)不為零的等差數(shù)列{an}中,$a_7^2=2({a_3}+{a_{11}})$.?dāng)?shù)列{bn}是等比數(shù)列,且b7=a7則b6b8=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為${ρ^2}-2\sqrt{2}ρsin({θ-\frac{π}{4}})-2=0$,曲線C2的極坐標(biāo)方程為$θ=\frac{π}{4}({ρ∈R})$,C1與C2相交于A,B兩點(diǎn).
(1)把C1和C2的方程化為直角坐標(biāo)方程,并求點(diǎn)A,B的直角坐標(biāo);
(2)若P為C1上的動(dòng)點(diǎn),求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)直線l,m,平面α,β,下列條件能得出α∥β的是③
①l?α,m?α,且l∥β,m∥β;   ②l?α,m?β且l∥m;
③l⊥α,m⊥β,且l∥m;        ④l∥α,m∥β,且l∥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足($\sqrt{3}$+i)z=4i(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.$\sqrt{3}$+iB.$\sqrt{3}$-iC.1+$\sqrt{3}$iD.1-$\sqrt{3}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案