分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,進行平移即可得到結(jié)論.
解答 解:作出實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x+y≤4}\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當直線y=-2x+z經(jīng)過點A時,
直線y=-2x+z的截距最大,此時z最大,
由$\left\{\begin{array}{l}{y=0}\\{x+y=4}\end{array}\right.$,解得A(4,0),此時z=2×4+0=8,
故答案為:8.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1$-\sqrt{2}$ | B. | 3 | C. | $\sqrt{2}-1$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,-1)和 (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n-1 | B. | 16[1-($\frac{1}{2}$)n] | C. | 2n-1-1 | D. | 16[1-($\frac{1}{2}$)n-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 | B. | 48 | C. | 60 | D. | 72 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com