精英家教網 > 高中數學 > 題目詳情

【題目】已知點,直線為平面內的動點,過點作直線的垂線,垂足為點,且.

(1)求動點的軌跡的方程;

(2)過點作兩條互相垂直的直線分別交軌跡四點.求的取值范圍.

【答案】(1) (2)

【解析】

(1)設動點,則,由展開計算得到的關系式即可;(2)當直線的斜率不存在(或者為0)時,可求出四點坐標,即可得到;當直線的斜率存在且不為0時,設為,直線的方程為,與軌跡的方程聯(lián)立,結合根與系數的關系可得到+的表達式,然后利用函數與導數知識可求出的取值范圍。

(1)設動點,則

,則,

所以,

化簡得.

故點的軌跡的方程為.

(2)當直線的斜率不存在時,軸,

可設

,

當直線的斜率為0時,軸,同理得,

當直線的斜率存在且不為0時,設為,則直線的方程為:,

,由得:

,

所以,

,

直線的方程為:,

同理可得:,

所以

,則

,

,

,得,得

上單調遞減,在上單調遞增

,

,故.

綜上所述,的取值范圍是.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若函數yf(x)滿足:集合A={f(n)|n∈N*}中至少有三個不同的數成等差數列,則稱函數f(x)是“等差源函數”,則下列四個函數中,“等差源函數”的個數是(  )

y=2x+1;②y=log2x;③y=2x+1;

y=sin

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在定義域上不單調,求的取值范圍;

(2)設分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為為參數),交于,兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)設點;若、、成等比數列,求的值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用雙色球定折扣的方式促銷,即:在紅、黃的兩個紙箱中分別裝有大小完全相同的紅、黃球各5個,每種顏色的5個球上標有12,3,4,55個數字,顧客結賬時,先分別從紅、黃的兩個紙箱中各取一球,按兩個球的數字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,.

1)令,求證:有唯一的極值點;

2)若點為函數上的任意一點,點為函數上的任意一點,求、兩點之間距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是拋物線的焦點,若點在拋物線上,且

求拋物線的方程;

動直線與拋物線相交于兩點,問:在軸上是否存在定點其中,使得向量與向量共線其中為坐標原點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側,其中.現將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,,,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,,的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習冊答案